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Let md denote the Lebesgue measure on R,

B ⊂ R a Borel set, and χB the characteristic

function of B . For every norm ‖ · ‖ on Rd and

every x ∈ Rd, we denote

B‖·‖(x, r) := {y ∈ Rd ; ‖y − x‖ ≤ r} , r > 0 ,

D‖·‖,B(x) := lim inf
0<r→0

md

(
B ∩B‖·‖(x, r)

)
md

(
B‖·‖(x, r)

) ,

D‖·‖,B(x) := lim sup
0<r→0

md

(
B ∩B‖·‖(x, r)

)
md

(
B‖·‖(x, r)

) .

If D‖·‖,B(x) = D‖·‖,B(x), then we denote this

common value

lim
0<r→0

md

(
B ∩B‖·‖(x, r)

)
md

(
B‖·‖(x, r)

) (1)

by D‖·‖,B(x) and call it density of B at x . If

even the limit

lim
0 < r → 0

x ∈ B‖·‖(y , r)

md

(
B ∩B‖·‖(y , r)

)
md

(
B‖·‖(y , r)

)
(2)



exists, then we say that the density of B at x

exists in strong sense.

We notice that, in the one-dimensional case

d = 1, the existence of the density of a Borel

set B ⊂ R at x ∈ R in the strong sense (2)

means the derivability of the function

fa : (a,+∞) 3 t 7−→ m1

(
B ∩ (a, t)

)
at x (where a < x can be chosen arbitrarily),

while the existence of the density of B at x in

the ordinary sense (1) means the symmetric

derivability of the above fa at x .

By the Lebesgue density theorem we have for

every norm ‖ · ‖ on Rd and md-almost every

x ∈ Rd :

D‖·‖,B(x) = D‖·‖,B(x) = D‖·‖,B(x) = χB(x) .

In particular, if we assume that md(B) > 0

and md(Rd\B) > 0, then the functions D‖·‖,B
and D‖·‖,B take both values 1 and 0.



Points with D‖·‖,B(x) = 1 or 0

Let B ⊂ Rd be a Borel set, and x ∈ Rd. If the
density D‖·‖,B(x) exists and is equal to 0 for

some norm ‖ · ‖ on Rd, then, for every norm
||| · ||| on Rd, the limit

lim
0 < r → 0

x ∈ B||| · |||(y , r)

md

(
B ∩B||| · |||(y , r)

)
md

(
B||| · |||(y , r)

)

exists and is equal to 0 .

Proof. First of all we notice that, since any
two norms on the finite-dimensional vector
space Rd are equivalent, there exist constants
0 < c1 < c2 such that

c1‖y‖ ≤ |||y||| ≤ c2‖y‖ , y ∈ Rd .

Thus, for every y ∈ Rd with x ∈ B||| ·|||(y , r),

B‖·‖

(
y ,

r

c2

)
⊂ B||| · |||(y , r)

⊂ B||| · |||(x,2r) ⊂ B‖·‖
(
x,

2r

c1

)
.



Consequently:

md

(
B ∩B||| · |||(y , r)

)
md

(
B||| · |||(y , r)

)
≤
md

(
B ∩B‖·‖(x,

2r
c1

)
)

md

(
B‖·‖(y ,

2r
c2

)
)

=
md

(
B‖·‖(x,

2r
c1

)
)

md

(
B‖·‖(y ,

2r
c2

)
)

︸ ︷︷ ︸
=
(

2r
c1
· c22r

)d
=
(
c2
c1

)d
·
md

(
B ∩B‖·‖(x,

2r
c1

)
)

md

(
B‖·‖(x,

2r
c1

)
)

=
(
c2
c1

)d
·
md

(
B ∩B‖·‖(x,

2r
c1

)
)

md

(
B‖·‖(x,

2r
c1

)
) .

We conclude:

lim sup
0 < r → 0

x ∈ B||| · |||(y , r)

md

(
B ∩B||| · |||(y , r)

)
md

(
B||| · |||(y , r)

)

= lim sup
0<r→0

(
sup

x∈B||| · |||(y ,r)

md

(
B ∩B||| · |||(y , r)

)
md

(
B||| · |||(y , r)

) )



≤ lim sup
0<r→0

((
c2
c1

)d
·
md

(
B ∩B‖·‖(x,

2r
c1

)
)

md

(
B‖·‖(x,

2r
c1

)
) )

=
(
c2
c1

)d
·D‖·‖,B(x) = 0 .

�

Replacing in the above statement B by Rd\B ,
we obtain its counterpart for 1:

Let B ⊂ Rd be a Borel set, and x ∈ Rd. If the
density D‖·‖,B(x) exists and is equal to 1 for

some norm ‖ · ‖ on Rd, then, for every norm
||| · ||| on Rd, the limit

lim
0 < r → 0

x ∈ B||| · |||(y , r)

md

(
B ∩B||| · |||(y , r)

)
md

(
B||| · |||(y , r)

)

exists and is equal to 1 .

In particular, the existence of density 1 or 0 of
B at x is equivalent to the existence of density
1 or 0 of B at x in the strong sense (2) and
does not depend on the used norm.



The exceptional points

Let us call x ∈ Rd exceptional point for a Borel

set B ⊂ Rd with respect to the norm ‖ · ‖ on

Rd if

• either the density D‖·‖,B(x) does not exist

(that is D‖·‖,B(x) < D‖·‖,B(x)),

• or 0 < D‖·‖,B(x) < 1.

Let us call a Borel set B ⊂ Rd non-trivial if

md(B) > 0 and md(Rd \ B) > 0 , that is if the

density function D‖·‖,B is not a well defined

constant function (necessarily 1 or 0, does not

matter wich norm on Rd is used).

For a non-trivial Borel set B ⊂ Rd exceptional

points must exist with respect to any norm

on Rd.

In the case d = 1 this is particularly easy to

see:



Indeed, assuming that no exceptional points

exist, the density of B is defined and equal to

1 or 0 at every point x ∈ R . But then, as

we have seen, the density of B exists in the

strong sense (2) everywhere, so the function

fa : (a,+∞) 3 t 7−→ m1

(
B ∩ (a, t)

)
is derivable for each a ∈ R and the range of

its derivative is contained in {0 ,1} . Since

derivatives have the Darboux property, this is

possible only if the derivative of fa is constant,

what is not true for every a .

The above reasoning can be adapted (using,

for example, the Darboux type theorem from

[5]) also to the case of Borel sets in Rd with

d > 1.

According to the Lebesgue density theorem,

the set of all exceptional points is narrow, of

zero Lebesgue measure. Nevertheless, one

can look, in the case of non-trivial Borel sets,

for particular exceptional points, for example,



for a point at which the density is 1/2 . This

happens, for example, in the case of the set

[0 ,+∞) ⊂ R .

Exceptional points in R

On R we consider only the usual norm, the

absolute value, and denote, for B ⊂ R a Borel

set and x ∈ R , simply

DB(x) := lim inf
0<r→0

m1

(
B ∩ [x− r , x+ r]

)
2r

,

DB(x) := lim sup
0<r→0

m1

(
B ∩ [x− r , x+ r]

)
2r

.

V. I. Kolyada has found in 1983 (see [3]):

There exists a constant δ > 0 such that, for

every non-trivial Borel set B ⊂ R , there exists

a point x ∈ R such that

δ ≤ DB(x) ≤ DB(x) ≤ 1− δ . (3)



He found out that the above statement works

with δ = 1/4 . The optimal value for δ was

established much later, due to the successive

work of A. Szenes ([6]), M. Csörnyei, J. Grahl,

T. O’Neil ([2]) and, finally, O. Kurka ([4])

(we notice that all the above work uses a dis-

cretization of the problem, whose idea is at-

tributed by A. Szenes to M. Laczkovich). It

is namely the only real root of the polynomial

equation

8λ3 + 8λ2 + λ− 1 = 0 ,

namely δ1 = 0,268486... (see [4], Theorem

1.1).

It would be interesting to find out, whether

also for d > 1 and for any norm ‖ · ‖ on Rd,
there is a constant δ > 0 (depending of course

on d and ‖ · ‖), such that, for every non-trivial

Borel set B ⊂ Rd, we have

δ ≤ D‖·‖,B(x) ≤ D‖·‖,B(x) ≤ 1− δ

with an appropriate x ∈ Rd.



Exceptional points in Rd for arbitary d

Looking on (3), we can ask (for ”symmetry

reason”?): does it exist, for every non-trivial

Borel set B ⊂ R , some x ∈ R satisfying

δ ≤ DB(x) ≤
1

2
≤ DB(x) ≤ 1− δ .

Recently, R. Peirone and I have proved the

following statement, implying a partial answer

to the above question:

Let B ⊂ Rd be a Borel set, and ∅ 6= U ⊂ Rd a

connected open set such that md(B ∩ U) > 0

and md

(
U \ (B ∩ U)

)
> 0 (we could say that

B ∩ U is non-trivial in U). Then there exists

some x ∈ U such that

lim inf
0<r→0

md

(
B ∩ (x+ rF )

)
md(x+ rF )

≤
1

2

≤ lim sup
0<r→0

md

(
B ∩ (x+ rF )

)
md(x+ rF )



for every bounded Borel subset F of Rd with

md(F ) > 0 , which is symmetric with respect

to the origin ; in particular, for this x we have

D‖·‖,B(x) ≤
1

2
≤ D‖·‖,B(x)

for every norm ‖ · ‖ on R .

In particular, if B ⊂ Rd is a non-trivial Borel

set such that, for every x ∈ Rd, the density of

B exists at x with respect to some norm ‖ · ‖x
on Rd depending on x , then there exists some

x ∈ Rd such that

D‖·‖x,B(x) =
1

2
.

In the case ‖ · ‖x = ‖ · ‖2 for all x ∈ Rd, where

‖ · ‖2 stands for the Euclidean norm on Rd, the

above statement was proved by A. Andretta,

R. Camerlo, C. Costantini ([1]).
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