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Motivations

For 1 < j <nlet Rj(f)(z) = ¢ Jgn =t f(y) dy denote the Riesz

] ) |lz—y|™*
transform in the jth variable.
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Motivations

For 1 <j <mnlet R;(f)(z) = cn [gn I%—_yjr (y) dy denote the Riesz

z—y|"*
transform in the jth variable.

1
1 9 2
b n:=sup<—/bx)—b da:)
| HBMO(]R) o \Q] Q| ( Ql
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Motivations _

For 1 <j <mnlet R;(f)(z) = cn [gn lxj—_yjr (y) dy denote the Riesz

z—y|"*
transform in the jth variable.

1

1 2
|| n :=sup<—/ b(x) —b 2da:>
IBapomn) RANT] Ql (x) = bg

H'(R") = {f € L'(R") : R;f € L'(R")}

£ 1 2 gy = 1 lpa gy + D IR Fll g ggeny -
j=1
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Motivations _

The dual of H(R™) is BMO(R™), i.e., (H(R"))" = BMO(R").
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Motivations _

The dual of H(R™) is BMO(R™), i.e., (H(R"))" = BMO(R").

For each j = 1,...,n define the following commutator operator on
L?(R™):
[b, Bj)(f)(@) = b(x) R (f)(x) — R;(bf) ().
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Motivations _

The dual of H(R™) is BMO(R™), i.e., (H(R"))" = BMO(R").
For each j = 1,...,n define the following commutator operator on
L?(R™):

[b, Bj)(f)(@) = b(x) R (f)(x) — R;(bf) ().

Let b € BMO(R"™), then for j=1,...,n

||[b, Rj]||L2(R")—>L2(R") 5 ||b||BMO(R”) :

If || [b, Rj]”LQ(Rn)_)IIQ(Rn) < 4oo forj=1,...,n, then

16l Brro@ny S e 1165 Bl 2 mmy = L2 (R -
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Motivations

Define the following bilinear operators on L?(R") x L?(R"™) by:

II;(g,h) = gR;h+ hRjg j=1,...,n.
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Motivations _

Define the following bilinear operators on L?(R") x L?(R"™) by:

II;(g,h) = gR;h+ hRjg j=1,...,n.

Let f,g € L(R") then for j=1,...,n

VL5 (F, ) oy S 1oy N oy

Moreover, for any f € H'(R") there ewists gi, hi € L%(R") so that
f=200350 11;(g3,, h,). And

n

L2 Rn) f ZZHJ gk’ }

L2(R") Jj=1k=1

n o0
HfHHl(R") %inf{ZZHgk’ ’h ‘
J=1 k=1

B.D. Wick (WUSTL) | Commutators and BMO  BEEASEOEIcooNaia



Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
« The Hankel operator with symbol ¢ is the map from H? to (H?)*
and is defined as A, (f) = (I — P4 )(f) = [, P41()).
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
« The Hankel operator with symbol ¢ is the map from H? to (H?)*

and is defined as h,(f) = (I - B4)(of) = [, B+ 1().
o [b,H) = hy — I
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.

L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
The Hankel operator with symbol ¢ is the map from H? to (H?)*

and is defined as h,(f) = (I - B4)(of) = [, B+ 1().
[b, H] = hy, — I

o The Commutator Theorem says things about div-curl lemmas If

B and E are vector ﬁelds in L2 with curl B = 0 and divE = 0
then we have that E - B € H'.
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
« The Hankel operator with symbol ¢ is the map from H? to (H?)*
and is defined as hy(f) = (I — P+ )(ef) = o, P4](f)-
- [bH] = hy— B2
o The Commutator Theorem says things about div-curl lemmas If
B and E are vector fields in L? with curl B = 0 and divE = 0
then we have that E - B € H!.
« B curl-free implies there exists a function ¢ € L2(R") such that
B; = Rjp and || B| p2gn.pny = 1€l L2 (Rn)-
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
« The Hankel operator with symbol ¢ is the map from H? to (H?)*
and is defined as h,(f) = (I — P4 )(pf) = [@, P4](f).
- [bH] = hy— B2
o The Commutator Theorem says things about div-curl lemmas If
B and E are vector fields in L? with curl B = 0 and divE = 0
then we have that E - B € H!.
« B curl-free implies there exists a function ¢ € L2(R") such that
B; = Rjp and || B| p2gn.pny = 1€l L2 (Rn)-
- E is divergence-free and so > e BiEj(x) = 0;
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Motivations

® The commutator [b, H] (H Hilbert transform) connects to complex
analysis. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
o L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H2.
« The Hankel operator with symbol ¢ is the map from H? to (H?)*
and is defined as h,(f) = (I — P4 )(pf) = [@, P4](f).
- [bH] = hy— B2
o The Commutator Theorem says things about div-curl lemmas If
B and E are vector fields in L? with curl B = 0 and divE = 0
then we have that E - B € H!.
« B curl-free implies there exists a function ¢ € L2(R") such that
B; = Rjp and || B| p2gn.pny = 1€l L2 (Rn)-
- E is divergence-free and so > e BiEj(x) = 0;
- E-B(z) = ¥_, Ei(2)B;(x) = X}, B;(2)R;p(x) + ¢(z) R Ej(x).
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Motivations

@ Change the Target and Domain Spaces:
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Motivations

@ Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).

B.D. Wick (WUSTL) | Commutators and BMO  BEENASERTiEISoioNNciaT



Motivations

® Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:
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Motivations

® Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:

« Can we characterize a BMO space for Riesz transforms VL3
associated to operators L other than the Laplacian?
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Motivations

® Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:

« Can we characterize a BMO space for Riesz transforms VL3
associated to operators L other than the Laplacian?

® Change the geometry of the operator and underlying space:
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Motivations

® Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:

« Can we characterize a BMO space for Riesz transforms VL3
associated to operators L other than the Laplacian?

® Change the geometry of the operator and underlying space:

« Can we characterize the commutators when the operators are
invariant under different dilation structures?
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Motivations

@ Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:
« Can we characterize a BMO space for Riesz transforms VL3
associated to operators L other than the Laplacian?
® Change the geometry of the operator and underlying space:
« Can we characterize the commutators when the operators are
invariant under different dilation structures?
« Can we characterize the commutators when they are defined on
objects that possess certain geometric properties?
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Motivations

® Change the Target and Domain Spaces:
« Characterize the symbols b so that [b, 7] : L?(X, A1) — L1(X, A2).
@ Change the Differential Operator you care about:

« Can we characterize a BMO space for Riesz transforms VL3
associated to operators L other than the Laplacian?

® Change the geometry of the operator and underlying space:

« Can we characterize the commutators when the operators are
invariant under different dilation structures?

« Can we characterize the commutators when they are defined on
objects that possess certain geometric properties?

Also interested in combinations of the above questions.
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Motivations

® Proving the Upper bound:
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Motivations

® Proving the Upper bound:
« Good A inequalities.

B.D. Wick (WUSTL) | Commutators and BMO  BEEASERTEISo N T



Motivations

® Proving the Upper bound:

« Good A inequalities.
« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
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Motivations

® Proving the Upper bound:

« Good A inequalities.
« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.
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Motivations

® Proving the Upper bound:
« Good A inequalities.
« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.
» Cauchy Integral Trick.
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Motivations

® Proving the Upper bound:

« Good A inequalities.

« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.

» Cauchy Integral Trick.

@ Proving the Lower Bound:

B.D. Wick (WUSTL) | Commutators and BMO  BEENASESOEISo NN T



Motivations

® Proving the Upper bound:

« Good A inequalities.

« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.

» Cauchy Integral Trick.

@ Proving the Lower Bound:
« Direct Testing of the Operator.
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Motivations

® Proving the Upper bound:
« Good A inequalities.
« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.
» Cauchy Integral Trick.
@ Proving the Lower Bound:

« Direct Testing of the Operator.
» Uchiyama’s Algorithm.
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Motivations

® Proving the Upper bound:
« Good A inequalities.
« Dyadic Harmonic Analysis Methods (paraproducts, shift operators).
« Sparse Operators and Domination.
» Cauchy Integral Trick.
@ Proving the Lower Bound:

« Direct Testing of the Operator.
» Uchiyama’s Algorithm.

For some specific operators we have proofs we can exploit using the
structure of the operator.
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Motivations

zb zb
Consider the operator: S,(f) =e2T(e” 2 f), where f is a “nice”
function and z is a parameter related to some information about b.
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Motivations

zb zb
Consider the operator: S,(f) =e2T(e” 2 f), where f is a “nice”
function and z is a parameter related to some information about b.
Expand in a power series in z and observe that:

d

1
50| _ =7 TI0).
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Motivations

zb zb
Consider the operator: S,(f) =e2T(e” 2 f), where f is a “nice”
function and z is a parameter related to some information about b.
Expand in a power series in z and observe that:

d

1
dz :Z[va](f)'

z=0

The function z — S,(f) is holomorphic and so by the Cauchy Integral
Formula we have:

o

3 1/ e%bT(e—%f)d
=0 8 Jizj=c e

d

1
Z[ba T](f) = %Sz(f)

Zo
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Motivations

Two important facts are needed to take advantage of this computation:
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Motivations

Two important facts are needed to take advantage of this computation:

Ifb€ BMO, |z| < e ® mrt— then e® € Ay with [e®*]a, < 1.

1
ol 5aro
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Motivations _

Two important facts are needed to take advantage of this computation:

Ifb€ BMO, |z| < e ® mrt— then e® € Ay with [e®*]a, < 1.

1
ol 5aro

If T is a Calderon-Zygmund operator and w € As then

|7 : 12(w) - 2(w)|| < Cw, 7).
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Motivations

From this we have:

zb _zb
1 dnedn,
|z|=€

2mi 22

116 TI(Pll 2 = ‘

.2
zb zb
e2T(e” 2 f)
5 / ‘ . ‘L2d|z|
|z|=€ |Z|
zb zb
eFTe % : L% L2H
S £l 2
T : L%(e?) — L2(62b)H
= £l 2
S bllgaro 1f1 2 -
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Motivations

From this we have:

zb _zb
1 dnedn,
|z|=€

2mi 22

116 TI(Pll 2 = ‘

.2
zb zb
e2T(e” 2 f)
5 / ‘ . ‘L2d|z|
|z|=€ |Z|
zb zb
eFTe % : L% L2H
S 1 £1l .2
T : L2(ezb) — Lz(eZb)H
- e 1712
S bllgaro 1f1 2 -

So the commutator [b,7] : L? — L? is bounded and the norm is
controlled by the BM O norm of b.
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Motivations

Useful facts for this proof:
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Motivations

Useful facts for this proof:

If T is a Calderon-Zygmund operator, then T has a decomposition in
terms of Haar shift operators:

T=3 &
7,8

Here

Srsf=>"> > arsk(f hs)hk.

I€D JeC,(I) KeCs(I)
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Motivations

Useful facts for this proof:

If T is a Calderon-Zygmund operator, then T has a decomposition in
terms of Haar shift operators:

T=3 &
7,8

Here

Srsf=>"> > arsk(f hs)hk.

I€D JeC,(I) KeCs(I)

Ifb € BMO then the paraproduct m, : L> — L? with

7o : 22 = 22| S bll o -
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Motivations

Also important is the following (paraproduct) decomposition:

bg = mpg + g + mgb.
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Motivations

Also important is the following (paraproduct) decomposition:
bg = mpg + g + mgb.

Since we can recover any operator T by Haar shifts, we can just study
[b, Sy.s] and obtain good estimates there.
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Motivations

Also important is the following (paraproduct) decomposition:
bg = mpg + g + mgb.

Since we can recover any operator T by Haar shifts, we can just study
[b, Sr.s] and obtain good estimates there. Observe now that for any
operator S that we have by the decomposition:

[b,5]f = bSf—S(bf)
= mSf+mSf+msb— S (mf+mf+meb)
= (mpS — Smp) f+ (7, S — Smy,) f + (g — S7e)b.
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Motivations

Also important is the following (paraproduct) decomposition:
bg = mpg + g + mgb.

Since we can recover any operator T by Haar shifts, we can just study
[b, Sr.s] and obtain good estimates there. Observe now that for any
operator S that we have by the decomposition:

[b,S]f = bSf—S(bf)

mSf+mySf+mgrb— S (mpf + 7 f + 7sb)
= (mpS — Smp) f+ (7, S — Smy,) f + (g — S7e)b.

The first two terms are easy and give the estimate we want. The
second term is an “error” but is amenable to direct analysis and
computation since we are working with dyadic operators.
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Motivations

Instead of proving ||b|| gar0 S ||[0, T : L2 — L?|| directly, by duality it
is enough to prove the factorization of H' directly.
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Motivations

Instead of proving ||b|| gar0 S ||[0, T : L2 — L?|| directly, by duality it
is enough to prove the factorization of H' directly. A function a is an
atom if it is supported in an interval I, [;adz =0, and [|a||; -~ < |—}‘

B.D. Wick (WUSTL) | GCommutators and BMO BRSO



Motivations

Instead of proving ||b|| gar0 S ||[0, T : L2 — L?|| directly, by duality it
is enough to prove the factorization of H' directly. A function a is an
atom if it is supported in an interval I, [;adz =0, and [|a||; -~ < |—}‘

Any f € H' can be written via an atomic decomposition:
[ =202, agay where ay, are atoms and || f|| g1 ~ inf{>";, |ou|}
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Motivations _

Instead of proving ||b|| gar0 S ||[0, T : L2 — L?|| directly, by duality it
is enough to prove the factorization of H' directly. A function a is an
atom if it is supported in an interval I, [;adz =0, and [|a||; -~ < |—}‘

Any f € H' can be written via an atomic decomposition:
[ =202, agay where ay, are atoms and || f|| g1 ~ inf{>";, |ou|}

Let Ip(g,h) = gTh — hT*g. For any € > 0 and for all atoms a there
exists g,h € L? such that:

la =Tz (g, h)llg < €
lgllz2 IRl < C(e).
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Motivations

One then combines the atomic decomposition with slitting atoms to
get the weak factorization.
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Motivations

One then combines the atomic decomposition with slitting atoms to
get the weak factorization.

f= Yo

k
= Y alP@? —1ir(g”, ")) + 3 aTir (oM, h)
k k

= FEj+ M.
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Motivations

One then combines the atomic decomposition with slitting atoms to
get the weak factorization.

f= Yo
k
= S oV(a - mp(g, Al —i—ZakHT (g, nY)

= FEj+ M.
We then have that:

1B |l = Za(“ W (g RN < CaellFllgpn -

Hl
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Motivations _

One then combines the atomic decomposition with slitting atoms to
get the weak factorization.

f= Yo
k
= S oV(a - mp(g, Al —i—ZakHT (g, nY)
k

= FEj+ M.
We then have that:

1Bl = Za(“ v =Tz hg || < Caellfllm -
H1
We can then apply the atomic decomposition to the function

>k ak ( O (95 (1) h(l))) and have:

E, = Z a,(cz)a,,(f).
k
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“

We can then apply the atomic decomposition to the function
=2k ak ( X HT(g,(gl),h,(j))) and have:

) 2&2) (2)

- Za@) Iz (gy, 2 h ZakHT g/,(c ),h( ))
k
= E2 + M>.
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“

We can then apply the atomic decomposition to the function
=2k ak ( X HT(g,(gl),h,(j))) and have:

) 2&2) (2)

- Za(2) Iz (gy, 2 h ZakHT g/,(c ),h( ))
k
= E2 + M>.

Again we then have:
(gD, b)) < CaellBrllg < (Ca0)? 11 £llg

B2 g1 =|
H!
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Motivations _

We can then apply the atomic decomposition to the function
=2 ak ( k) HT(g,(gl),h,(j))) and have:

E, = 2&2) (2)

_ Za@) ( 2) h ZakHT g](c ),h( ))
k
= E2 + M>.

Again we then have:

r(gl b < Cael|Brllgn < (Ca©)? I f |5

Hl

1 Eal g =

We can the choose that Cye < 1 and iterate to get that £; — 0 and
f =22, M, which is the decomposition we want.
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Changing the Domain and Target

Let w be a weight on R", i.e. w is an almost everywhere positive,
locally integrable function. Set w(Q) = [ow(z) dz and (w), = “'|(T|)
Then we say that w belongs to the Muckenhoupt class of A, weights

for some 1 < p < oo provided that:

_ 1—q\P7!
[w]a, = Sup (w)g <w >Q < o0,
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Changing the Domain and Target

Let w be a weight on R", i.e. w is an almost everywhere positive,
locally integrable function. Set w(Q) = [ow(z) dz and (w), = “i(—?)
Then we say that w belongs to the Muckenhoupt class of A, weights
for some 1 < p < oo provided that:

_ 1-q\P~1
[w]a, = Sup (w)g <w >Q < o0,

11
For1<p<oo, and A1, 2 € A, set v = ANy ”. Then there are
constants 0 < ¢ < C' < 00, depending only on n,p, A1 and Ao, for which

c||bll Brro, @) Z:L: H b, Ri] : L (R") — L% (R") H < C|]bll ao, ®n)-
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Changing the Domain and Target

« Let (X,d, ) be a space of homogeneous type; i.e. d is a quasi
metric and p is a doubling measure.
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Changing the Domain and Target _

« Let (X,d, ) be a space of homogeneous type; i.e. d is a quasi
metric and p is a doubling measure.

« T is a Calder6n—Zygmund operator on (X,d, ) if T' is bounded on
L?(X) and has the associated kernel K (x,y) such that

T(f)(z) = [ K(z,y)f(y)du(y) for any z & supp f, and K (z,y)
satisfies the following estimates: for all x # vy,

K@)l < g
and for d(z,2') < (24¢)td(x,y),
K (o) = K@) + 1K (. 2) = K] < g (5)

Here V(z,y) = pu(B(x,d(z,y))) and by the doubling condition we
have that V(z,y) = V(y, x).
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Changing the Domain and Target

A function f € L{ (X) belongs to BMO,,(X) if

1
161l Brrow (x) = S /Q |b(x) — bl du(z) < oco.
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Changing the Domain and Target

A function f € Ll _(X) belongs to BMO,,(

I¥lsr0.x) = sup o /\b el = e,

1 _1
Suppose 1 < p <00, Aj, 2 € Ay and v = A Ay " and b € BMO, (X).
Then
16, 7] : T2, (X) = L2, (N S Ibllmaro, (x)-
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Changing the Domain and Target

Let M be a large positive number. For any fixed ball B(zg,r) centered
at o € X with radius r > 0 there exists a ball B(yo,r) centered at

yo € X with radius r > 0 satisfying d(zo,yo) > Mr, such that T
satisfies that for every x € B(xzg,r),

( (y07 ))

T (b)) 2 s’
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Changing the Domain and Target

Let M be a large positive number. For any fixed ball B(zg,r) centered
at o € X with radius r > 0 there exists a ball B(yo,r) centered at

yo € X with radius r > 0 satisfying d(zo,yo) > Mr, such that T
satisfies that for every x € B(xzg,r),

( (y07 ))

T (b)) 2 s’

Suppose 1 < p < 0o, A € A,. Suppose that T' is a Calderon-Zygmund
operator that satisfies the condition above. Also suppose that [b,T) is
bounded from LX(X) to LX(X). Then b is in BMO(X), and

IBllBvo) S NIb, TT = LY(X) — LX(X)]]-
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Changing the Differential Operator

« Let Ry = (0,00) and define the measure dm := z*’dz (A > 0).
This is a space of homogeneous type.
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Changing the Differential Operator

« Let Ry = (0,00) and define the measure dm := z*’dz (A > 0).
This is a space of homogeneous type.

» The Bessel operator is defined by

Asf(@) = o f (@)~ 2 f(a).

z dx

(Note we have absorbed the minus sign into the definition).
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Changing the Differential Operator

« Let Ry = (0,00) and define the measure dm := z*’dz (A > 0).
This is a space of homogeneous type.

» The Bessel operator is defined by

Asf(@) = o f (@)~ 2 f(a).

z dx

(Note we have absorbed the minus sign into the definition).

» One can show that this operator is non-negative and self-adjoint
on L2(Ry;dmy):

(AN P 2@, amyy = 0 VS € LA(Ry;dmy)
(A D r2@isamy) = ' AAD 2R, dmy) -
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Changing the Differential Operator

« Akin to the Euclidean setting we define:
Ra, f = 0:(AN)12f
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Changing the Differential Operator

« Akin to the Euclidean setting we define:
Ra, f = 0:(AN)12f
« One can show that the kernel of this operator is:

2\ [T (z —ycosh)(sinfh)?* !
Th 1

K(z,y) = —
(@,y) T 22 + y2 — 2y cos )1

d9 =z,y€R,.
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Changing the Differential Operator

« Akin to the Euclidean setting we define:
Ra, f = 0:(AN)12f
« One can show that the kernel of this operator is:
2\ (™ (z —ycosb)(sin Ay
7w Jo (224 y2 — 2xycosh) 1

« This is a Calderén-Zygmund kernel on the space of homogenous
type:

K(z,y) = — dd z,yeRy.
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Changing the Differential Operator

« Akin to the Euclidean setting we define:
Ra, f = 0:(AN)12f
« One can show that the kernel of this operator is:
2\ (™ (z —ycosb)(sin Ay
7w Jo (224 y2 — 2xycosh) 1

« This is a Calderén-Zygmund kernel on the space of homogenous

type:
i) for every x,y € Ry with z #£ y,

d9 =z,y€R,.

K((I:,y) = =

1

K (z,y)] S NTCACETTIL
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Changing the Differential Operator

« Akin to the Euclidean setting we define:
Ra, f = 0:(AN)12f
« One can show that the kernel of this operator is:
2\ (™ (z —ycosb)(sin Ay
7w Jo (224 y2 — 2xycosh) 1

« This is a Calderén-Zygmund kernel on the space of homogenous

type:
i) for every x,y € Ry with z #£ y,

d9 =z,y€R,.

K({E,y) = =

1
ma(I(z, |z —yl))’
ii) for every z, xg, y € Ry with |29 — z| < |20 — y|/2,
K (y, z0) — K(y, 2)| + | K(20,y) — K(z,y)]
|zo — 2| 1
™ Jzo — yl ma(I(zo, |20 — yl))
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Changing the Differential Operator

A function f € L} (R4;dm,y) belongs to BMO(R,; dm,) if

_ fI(x,r) f(z) dm)\(z)
mx(I(z,r))

f()

1
su —_— m < Q0.
I G ) /am) A)
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Changing the Differential Operator

A function f € L} (R4;dm,y) belongs to BMO(R,; dm,) if

I B Ji@,r) f(2) dma(2)
ek, mr({I(z, 7) /f@w) ma(I(z,7))

HY(Ry;dmy) == {f € L'(Ry;dmy) : Ra, f € L (Ry;dmy)}

f()

mx(y) < oo.

||f||H1(R+;dm>\) = ||f||L1(R+;dm>\) + ||RA>\f||L1(R+;dm>\)'

B.D. Wick (WUSTL) | Commutators and BMO BRSO



Changing the Differential Operator

A function f € LL (R, ;dmy) belongs to BMO(R, ; dm,)) if

loc
su ;/ i@, [(2) dma(2)
:U,TE%+ m)\(.[(l', T‘)) ERD) m)\(I(LE, ’I"))

HY(Ry;dmy) == {f € L'(Ry;dmy) : Ra, f € L (Ry;dmy)}

m(y) < oo.

”f||H1(R+;dm>\) = “f”Ll(]RJ,_;dm)\) + ||RA>\f||L1(R+;dm>\)'

The dual of H* (R, ;dmy) is BMO(R,; dmy).
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Changing the Differential Operator _

Let [b, Ra,| be the commutator defined by

[0, Ra, 1 f () := b(x) R, f(x) — Ra, (0f)(2).

Let b € Ugs1 L (Ry;dmy) and p € (1,00).

(1) If b € BMO(Ry; dmy), then the commutator [b, Ra,] is bounded on
LP(Ry;dmy) with the operator norm

|| [b’ RAA] ||LP(]R+;dm>\)—>LT’(]R+;dm)\) S CHbHBMO(R-Hdm)\)'

(2) If [b, Ra,] is bounded on LP(Ry;dmy), then b € BMO(R,; dmy)
and

[bllBMO®R sdmy) < CH[b’RAA]HLP(R+;dm,\)—>LP(R+;dm>\)'
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Changing the Differential Operator

Let p € (1,00) and p' be the conjugate of p. For any f € H (R, ;dm,),
there exist numbers {a?}k,j, functions {gf};” C LP(Ry;dmy) and
{h?}k,j C LP (Ry;dm,y) such that

f=222 o g} )

k=1j=1

in H'(R4;dmy), where the operator 11 is: I1(g, h) := gRa, h — hR} g.
Moreover, there exists positive constants such that

5]

Lp(Ry;dmy)

(o) o0
e[ 52t |
| f1 Ry sdmy) = 0 {;;W 9 L? (Ry;dmy)
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Changing the Geometry

The Hilbert transform along ~(t) = (¢,t?) is defined as

(@ = [ fe-)F, wer?
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Changing the Geometry

The Hilbert transform along ~(t) = (¢,t?) is defined as

(@ = [ fe-)F, wer?

We call Q C R? a parabolic cube if Q = I; x I, where I; and I, are
intervals on R and |Iz| = |I1|2.
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Changing the Geometry

The Hilbert transform along ~(t) = (¢,t?) is defined as

H(D@ =py. [ fa-v®)F, seR

We call Q C R? a parabolic cube if Q = I; x I, where I; and I, are
intervals on R and |Iz| = |I1|2.

Suppose b € L},.(R?). b is in BMO,(R?) if

1
16llBMmoO., (R2) == Sup @/Q b(x) — bg|dz < oo,

where the sup is taken over all parabolic cubes and by = ﬁ Jo b(y)dy.
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Changing the Geometry

Suppose 1 < p < oco. There exists a positive constant C7 such that for
b € BMO,(R?), we have

b, Hy) = LP(R?) = LP(R*)]| < C1llbllswmo,, (r2)-
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Changing the Geometry

Suppose 1 < p < oco. There exists a positive constant C7 such that for
b € BMO,(R?), we have

b, Hy) = LP(R?) = LP(R*)]| < C1llbllswmo,, (r2)-

We do not know if the lower bound holds true. We can prove that if
the commutator is bounded, then there is some necessary condition the
symbol b must satisfy, but it isn’t obvious that this new condition is
the same as being in parabolic BMO.
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Changing the Geometry

Suppose G is a stratified nilpotent Lie group.

Recall that a connected, simply connected nilpotent Lie group G is said
to be stratified if its left-invariant Lie algebra g (assumed real and of
finite dimension) admits a direct sum decomposition

k
g = P V; where [Vi,Vi] = Viyy fori <k — 1.
=1

Let {X,}1<j<n be a basis for the left-invariant vector fields of degree
one on G. Let A = Z?:l X J2 be the sub-Laplacian on G. Consider the

1

7' Riesz transform on G which is defined as R; := X;(—A) 2.
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Changing the Geometry _

BMO(g) = {b € Llloc(g) : ||b||BMO(g) < OO},

where

1
b 1= su —/ b(g) — bpldg.
Plmsioe) = sup 1 [ [b(9) ~ beldg

and bp := %[ J5 b(g) dg, where B denotes the ball on G defined via a
homogeneous norm p.
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Changing the Geometry

BMO - {b € Lloc ||b||BMO (9] < OO}
where

1
b 1= su —/ b(g) — bpldg.
Plmsioe) = sup 1 [ [b(9) ~ beldg

and bp := %[ J5 b(g) dg, where B denotes the ball on G defined via a
homogeneous norm p.

Suppose that G is a stratified nilpotent Lie group and that 1 < p < oo
and j =1,2,...,n. Then the commutator of b € BMO(G) and the
Riesz transform R; satisfies
I[b, Rj] : LP(G) — LP(G)|| =~ [|bllBMmogg)-
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Changing the Geometry

We work in the multiparameter setting R x R where we study
operators that are invariant under dilations in each variable separately.
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Changing the Geometry

We work in the multiparameter setting R x R where we study
operators that are invariant under dilations in each variable separately.

A function b € L}, (R?) is in bmo(R x R) if

1bllbmo(ExE) = sup / 1b(1, @) — br|dz1dzs < oo,
RCRXR |R|

where

br = / b(x1,x2)dx1dre
R

IR]

is the mean value of b over the rectangle R.
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Changing the Geometry

We work in the multiparameter setting R x R where we study
operators that are invariant under dilations in each variable separately.

A function b € L}, (R?) is in bmo(R x R) if

[ —_—— // 1b(1, @) — br|dz1dzs < oo,
RCRXR |R|

where
br = —/ b(x1,x2)dr1dr

is the mean value of b over the rectangle R.

It is well known that bmo(R x R) coincides with the space of integrable
functions which are uniformly of bounded mean oscillation in each
variable separately.
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Changing the Geometry

We have the following equivalent characterizations for bmo(R x R).
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Changing the Geometry

We have the following equivalent characterizations for bmo(R x R).

Let b € L}, (R?). The following conditions are equivalent:
(i) b€ bmo(R x R);
(ii) The commutators [b, H1] and [b, Ha] are both bounded on L*(R?);

(iii) The commutator [b, Hy Ha] is bounded on L*(R?).
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Changing the Geometry

We have the following equivalent characterizations for bmo(R x R).

Let b € L}, (R?). The following conditions are equivalent:
(i) b€ bmo(R x R);
(ii) The commutators [b, H1] and [b, Ha] are both bounded on L*(R?);

(iii) The commutator [b, Hy Ha] is bounded on L*(R?).

The proof of the above theorem is done via complex analysis
techniques.
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Changing the Geometry

An atom on R x R is a function a € L°°(R?) supported on a rectangle
R C R x R with |aljoc < |R|™! and satisfying the cancellation property

/ a(x1,xe)dxidry = 0.
R2

Let Atom(R x R) denote the collection of all such atoms.
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Changing the Geometry

An atom on R x R is a function a € L>(R?) supported on a rectangle
R C R x R with |aljoc < |R|™! and satisfying the cancellation property

/ a(x1,xe)dxidry = 0.
R2

Let Atom(R x R) denote the collection of all such atoms.

The atomic Hardy space h'(R x R) is defined as the set of functions of
the form f =", a;a; with {a;}; C Atom(R x R), {a;}; C C and

> || < 0o. Moreover, h'(R x R) is equipped with the norm

[ flln1 (mxr) := inf >°; || where the infimum is taken over all possible
decompositions of f.
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Changing the Geometry

For every f € h'(R x R), there exist sequences {af}j € (' and
functions g;? , h;? € L?(R?) such that

(o o lNe o]
1= 5 S ot (ah)
k=1j=1
in the sense of h*(R x R), where I1(f, g) is the bilinear form defined as
H(g, h) = hHngg — ngHQh.

Moreover, we have that

o0 o0
o k||| &
1 s ey = i { S5~ o] 5], 174 )
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The daydreams of cat herdel

(Modified from the Original Dr. Fun Comic)
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The daydreams of cat herdel

(Modified from the Original Dr. Fun Comic)

Thanks to the Organizers for Arranging the Meeting!
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Thank Youl




	Motivations
	The Classical Case
	Extensions and Importance
	Proof Strategies and Overview

	Changing the Domain and Target
	Bloom's Theorem

	Changing the Differential Operator
	The Bessel Operator

	Changing the Geometry
	Hilbert Along a Parabola
	Commutators on Stratified Lie Groups
	Commutators on Stratified Lie Groups
	Commutators in Multiparameter Settings
	Commutators in Multiparameter Settings
	Commutators in Multiparameter Settings

	Conclusion

