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Essence of the matter

Problem. Let p ∈ (1,∞) and v ∈ Rd be a vector. How can we
define the class of "directional Sobolev maps"from Rd to Rd?
Distributional approach. Given a map u : Rd → Rd and a vector
v ∈ Rd , we say that u belongs to the Sobolev space W v

p (Rd ,Rd) if
u ∈ Lp(Rd ,Rd) and ∃h ∈ Lloc1 (Rd ,Rd) s.t. ∀ϕ ∈ C∞c (Rd ,Rd)∫

(h, ψ) dLd = −
∫

(u, ∂vψ) dLd .

We shall call h as distributional derivative of u and denote it by
∂vu.
Metric approach (Korevaar-Schoen). Given p ∈ (1,∞) and
v ∈ Rd we write u ∈ KSv

p(Rd ,Rd) if u ∈ Lp(Rd ,Rd) and

sup
ϕ∈C∞

c (Rd )

lim
ε→0

∫
ϕ(x)

‖u(x + εv)− u(x)‖p

εp
dLd(x) < +∞.



Essence of the matter

It is not difficult to establish the following
Proposition. Let p ∈ (1,∞) and v ∈ Rd . Then
u ∈W v

p (Rd ,Rd)⇔ u ∈ KSv
p(Rd ,Rd). Furthermore,

u(·+ εv)− u(·)
ε

→ ∂vu, ε→ 0 in Lp(Rd ,Rd).

Due to the fact that the second definition is purely metric and
intrinsic it is reasonable to pose the following
Problem. Is it possible to introduce Sobolev maps in "the spirit of
Korevaar-Schoen"when both the target space and the source space
are nonsmooth?



Classical Korevaar-Schoen space

Let M = (M, g) be a compact smooth Riemannian manifold, Z be
a smooth vector field on M.
We built the flow FlZt which arises as a solution of the ODE system{

∂t FlZt (x) = Z (FlZt (x)), (x , t) ∈ M×(0,T );

FlZ0 (x) = x , x ∈ M .

Fix p ∈ (1,∞) and complete metric space (Y, dY). Given a map
u ∈ Lp(M,Y) we set for every (x , ε) ∈ M×(0,T )

eZp,ε[u](x) :=
dp
Y(u(x), u(FlZε (x)))

εp
.

For every ε > 0 consider the functional

EZ
p,ε[u](ϕ) :=

∫
ϕ(x)eZp,ε[u](x) dµg (x), ϕ ∈ Cc(M).



Classical Korevaar-Schoen space

The following definition was firstly introduced in [1]
Definition 1 Given p ∈ (1,∞), a smooth vector field Z and
complete metric space (Y, dY), we say that a map u belongs to
KS1

p(M,Y) if
(1) u ∈ Lp(M,Y);
(2) EZ

p [u] := lim
ε→0

EZ
p,ε[u] < +∞.

In [1] various properties of directional energy functionals EZ
p [u]

were established for the purposes of proving Lipschitz regularity of
harmonic maps between Riemannian manifolds and CAT(0) spaces.
In [2] Lipschitz regularity of harmonic maps was established when X
has nonnegative curvature in the sense of Alexandrov.
Nicola Gigli initiated a big project aiming at developing a full theory
of Sobolev maps between singular spaces. More precisely, we would
like to replace Riemannian manifold to a singular space with
curvature bounded from below in some generalized sense.



CD(K ,∞) spaces

Let (X, dX) be a complete separable metric space. Let P(X) be the
space of all probability measures and P2(X) ⊂ P(X) all measures
with finite second moment. For µ0, µ1 ∈ P2(X)

W 2
2 (µ0, µ1) := inf

γ

∫∫
d2
X(x , y)dγ(x , y), (1)

inf is taken over all γ ∈ P(X×X) s.t. (Π1)]γ = µ0, (Π2)]γ = µ1.
We set

Entm(µ) :=

{ ∫
ρ ln ρ dm, µ = ρm and (ρ ln ρ)− ∈ L1(m);

+∞ otherwise
(2)

Definition 2 (Lott-Sturm-Villany) Given K ∈ R, we say that a
m.m.s (X, dX,m) is CD(K ,+∞) space if
∀µ0, µ1 ∈ P2(X) ∩ D(Ent(m)) ∃ a geodesic µt : [0, 1]→ P2(X) s.t.

Ent(µt) 6 (1−t) Ent(µ0)+t Ent(µ1)−K

2
t(1−t)d2

W (µ0, µ1). (3)



Cheeger Energy

Given a metric space (X, dX), we introduce the slope of a function
f : X→ R

lip f (x) :=

 lim
y→x

|f (x)−f (y)|
dX(x ,y)

, x is not an isolated point,

0, otherwise.

Definition 3 (J. Cheeger) Given a m.m.s X = (X, dX,m) and a
number p ∈ (1,∞), the Cheeger energy Chp : Lp(X)→ [0,+∞] is
defined by

Chp(f ) :=

inf{ lim
n→∞

∫
(lip fn)p dm : {fn} ⊂ LIP(X) and fn → f in Lp(X)}

=

∫
|∇f |pp dm.

(4)



Sobolev Spaces and RCD(K ,∞) condition

Definition 4 (J. Cheeger) Given a parameter p ∈ (1,∞) and a
m.m.s X we define the Cheeger-Sobolev space W 1

p (X) as finiteness
domain of Chp equipped with the norm

‖f ‖W 1
p (X)

:= ‖f ‖Lp(X) +
(

Chp(f )
) 1

p
. (5)

It is easy to show that in the case X = Rn with m = Ln the
Cheeger-Sobolev spaces coincide with classial Sobolev spaces.
Unfortunately, W 1

2 (Rn, ‖ · ‖q,Ln) are not Hilbert for q 6= 2.
Definition 5 (Ambrosio-Gigli-Savare) Given K ∈ R, we say that a
m.m.s X = (X, dX,m) satisfies the Riemannian Curvature
Dimension condition RCD(K ,∞) if it is a CD(K ,∞) m.m.s. and
the space W 1

2 (X) is Hilbert.
In the context of smooth manifolds Definition 5 ⇔ Ric > K .



Vector fields on RCD(K ,∞) spaces

Fix a m.m.s. X = (X, dX,m).
Definition 6 (Weaver-Gigli) We say that a linear functional
Z : LIP(X)→ L0(X) is a vector field (or derivation) if

Z (fg) = Z (f )g + fZ (g), ∀f , g ∈ LIP(X),

we write Z ∈ Lp(TX), p ∈ [1,∞] if ∃g ∈ Lp(X) s.t. ∀f ∈ LIP(X)

Z (f ) 6 g |∇f |p, m− a.e.

Given p ∈ [1,∞], we say that a family {Zt}t∈[0,1] ⊂ Lp(TX) is a
time dependent vector field if ∀f ∈W 1

p′(X) the map
(t, x)→ Zt(f )(x) is measurable with respect to B([0, 1]× X).



Regular Lagrangian Flows

Definition 7 (Ambrosio)Let Z = Zt be a time dependent vector
field. A Regular Lagrangian Flow of Z is a Borel map
FlZ : [0, 1]× X→ X if
(1) FlZ0 (x) = x and FlZ· (x) ∈ C ([0, 1],X) for every x ∈ X;
(2) there exists C > 0 – compressibility constant, s.t.(

FlZt

)
]
m 6 Cm;

(3) for every f ∈W 1
2 (X) it holds: for m-a.e. x the map

t → f (FlZt (x)) is in W 1
1 ((0, 1)) with

∂t f (FlZt (x)) = Zt(f ) ◦ FlZt (x) a.e. t ∈ [0, 1].

Theorem (Ambrosio and Trevisan) Let X be an RCD(K ,∞) space.
Then, for a sufficiently nice vector field Z called regular vector field
there exists a unique Regular Lagrangian Flow FlZ .



Korevaar-Schoen again

Let X = (X, dX,m) be an RCD(K ,∞) space and Y = (Y, dY) be a
complete metric space. Let Z be a regular autonomous vector field
on X and FlZ be the unique R.L.F. associated with Z .
Definition 8 (Gigli-T. 2019 [3]) Given p ∈ (1,∞) we say that
u ∈ KSZ

p (X,Y) iff u ∈ Lp(X,Y)

sup
ϕ

EZ
p [u](ϕ) = sup

ϕ
lim
ε→0

∫
ϕ(x)

dp
Y(u(x), u(FlZε (x)))

εp
dm(x) <∞.



Density of the energy

Theorem 1(Gigli-T. [3]) Let X = (X, dX,m) be an RCD(K ,∞)
space and Y = (Y, dY) be a complete metric space. Let Z be a
regular autonomous vector field on X and FlZ be the unique R.L.F.
associated with Z . Given p ∈ (1,∞), the following are equivalent:
(1) It holds u ∈ KSZ

p (X,Y);
(2) ∃G ∈ Lp(X) s.t. ∀0 6 t 6 s 6 1

dY(u ◦ FlZt , u ◦ FlZs ) 6

s∫
t

G ◦ FlZr dr , m− a.e..

This means that the curve t → u ◦ FlZt ∈ ACp
loc([0, 1], Lp(X,Y)).

Moreover if these hold ∃eZp [u] ∈ Lp(X) called the energy density
function s.t.

dY(u(·), u ◦ FlZε (·))

ε
→ eZp [u](·), ε→ 0 in Lp(X).



Triangle inequality for the energy

Theorem 2(Gigli-T. [3]) Let X = (X, dX,m) be an RCD(K ,∞)
space for some K ∈ R and Y = (Y, dY) be a complete metric
space. Given p ∈ (1,∞) , the following is true:
(1) Let Z be a regular vector field and u ∈ KSZ

p (X,Y). Then
u ∈ KSαZp (X,Y) for each α ∈ R and

eαZp [u] = |α|eZp [u]. (6)

(2) For every regular autonomous vector fields Z1, Z2 and
u ∈ KSZ1

p (X,Y) ∩ KSZ2
p (X,Y) it holds that u ∈ KSZ1+Z2

p (X,Y) and

eZ1+Z2
p [u] 6 eZ1

p [u] + eZ2
p [u], m− a.e.. (7)



CAT(0) spaces

Definition 9 A complete metric space (Y, dY) is said to be CAT(0)
space if:
(1) (Y, dY) is a length space, that is, ∀P,Q ∈ Y , the distance
dY(P,Q) is realized as the length of rectifiable curve connecting P
and Q;
(2) ∀P,Q,R ∈ Y and geodesics γP,Q , γQ,R , γR,P with lengthes r ,
p, q respectively, the following comparison property is to hold: For
any λ ∈ (0, 1) write Qλ for the point on γQR which a fraction λ of
the distance from Q to R . That is,

dY(Qλ,Q) = λp, dY(Qλ,R) = (1− λ)p.

Then the metric distance dY(P,Qλ) is bounded above by the
Euclidean distance |P − Qλ|, i.e.

d2
Y(P,Qλ) 6 (1− λ) d2Y(P,Q) + λ d2

Y(P,R)− λ(1− λ) d2Y(Q,R).



Parallelogram identity for the directional energy

Theorem 3(Gigli-T. [3]) Let K ∈ R, (X, dX,m) be RCD(K ,∞)
space, Z1,Z2 two regular vector fields on it. Let (Y, dY) be a
CAT(0) space and u ∈ KSZ1

p (X,Y) ∩ KSZ2
p (X,Y). Then

|e(Z1+Z2)
2 [u]|2 + |e(Z1−Z2)

2 [u])|2 =

2
(
|eZ1
2 [u]|2 + |eZ2

2 [u]|2
)

m− a.e..
(8)
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