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Motivation for dyadic and 2-adic analysis

Why are non-Archimedean local fields important?
Problems with the practical applications of the classical
fields R and C: in science there are absolute limitations
on measurements like Plank time, Plank length, Plank
mass.

The use of real time and space-time coordinates in
mathematical physics leads to some problems with the
Archimedean axiom on the microscopic level.
The Archimedian axiom... we can measure arbitrary
small distances.
But a measurement of distances smaller than the
Planck length is impossible.
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Motivation for dyadic and 2-adic analysis

VLADIMIROV, V.S., VOLOVICH, I.V. AND ZELNOV, E.I.,
p-adic Analysis and Mathematical Physics, Series in
Soviet and East European Mathematics, Vol. 10, World
Scientific Publishers, Singapore-New Jersey -London
-Hong Kong, (1994).
Volovich: some non-Archimedean normed fields have
to be used for a global space-time theory in order to
unify both microscopic and macroscopic physics. Let
us base physics on a coalition of non-Archimedean
normed fields and classical fields as R or C.
As p →∞, many of the fundamental functions of p-adic
analysis approach their counterparts in classical
analysis.
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Motivation for dyadic and 2-adic analysis

non-Archimedian norm: ‖a + b‖ 5 max{‖a‖, ‖b‖}.

The p-adic distance leads to interesting deviations from
the classical real analysis,
- two different balls are either disjoint or the one is
contained in the other one (splitting property).
- the collection of dyadic intervals have a hierarchical
structure: every interval consists of two disjoint interval
of smaller radius/higher rank (tree property).
Thus these groups (dyadic and 2-adic) are
homeomorphic to a Cantor set on R.
Volovich: the fractal-like structure of these groups
enable their application not only for the description of
geometry at small distances, but also for describing
chaotic behavior of chaotic systems.
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Historical background for Blaschke functions
and the Voice transformation

The Blaschke functions on C:
the open unit disc and its boundary

D := {z ∈ C : |z| < 1}; T := {z ∈ C : |z| = 1},

the closure of D: D̄ := D ∪ T.
the disc algebra a := {F : D̄→ C :
F is analytic on D and continuous on D̄}.
The Blaschke-function on C associated to a complex
parameter a ∈ D is defined by

Ba(z) := eiγ z − a
1− āz

(z ∈ C), (1)

where γ ∈ R and ā is the complex conjugate of a ∈ D.
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Background - Blaschke functions

Ba ∈ a and Ba is a one-one map from D onto D, and
from T onto T for every a ∈ D.
The inverse of Ba is also a Blaschke-function:

B−1
a (z) = e−iγ z + eiγa

1 + e−iγ āz
(z ∈ C).
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Background - Blaschke functions

Ba can be written in the form

Ba(eit ) = eiβa(t) (t ∈ R,a ∈ D) (2)

with the bijection βa : [−π, π]→ [−π, π],

βa(t) := γ + ϕ+ 2 arctan
(

s tan
(

t − ϕ
2

))
,

where a = reiϕ ∈ C, and s = η(r) is defined by means
of the bijection η : [0,∞)→ [0,∞):

η(r) :=


1 + r
1− r

for 0 ≤ r < 1

r − 1
r + 1

for 1 ≤ r <∞.

Furthermore, the composition of two Blaschke
functions, Ba1 and Ba2 is a Blaschke function.
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Notion of classical Voice transformation

The common generalization of the Fourier-, wavelet-,
Gábor- transforms is the so-called voice-transformation.
(G, ·): a locally compact topological group.
m: Haar measure.
A Hilbert-space: (H; 〈·, ·〉).
Let U be the set of unitary bijections U : H → H, that
is, U is formed by bounded linear operators U which
satisfy 〈Uf ,Ug〉 = 〈f ,g〉 (f ,g ∈ H).

(U , ◦) is a group, (here ◦ denotes the composition
operator).
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Notion of Unitary representation

The unitary representation of (G, ·) on H is defined to
be a homomorphism of the group (G, ·) on the group
(U , ◦) satisfying

Uxy = Ux ◦ Uy (x , y ∈ G)

x → Ux f ∈ H is continuous for all f ∈ H (x ∈ G).

The voice transform of f ∈ H generated by the
representation U and by the parameter ρ ∈ H is the
(complex- valued) function on G defined by

(Vf )(x) := 〈f ,Uxρ〉 (x ∈ G, f , ρ ∈ H).
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Notion of voice transform

For any representations U : G→ U and for each
f , ρ ∈ H the voice transform Vf is a continuous and
bounded function on G and V : H → C(G) is a
bounded linear operator.
Consider the norm ‖F‖ := sup{|F (x)| : x ∈ G} on the
group G, then the set of continuous bounded functions
defined on G form a Banach space.
From the unitarity of Ux : H → H follows that, for all
x ∈ G
|(Vρf )(x)| = 〈f ,Uxρ〉 = ‖f‖ · ‖Ux‖ = ‖f‖ · ‖ρ‖; thus
‖Vρ‖ ≤ ‖ρ‖.
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Notion of multiplier representations

Fa : G→ C∗ := C \ 0 (a ∈ G) is called the collection of
multiplier functions if

Fe = 1; Fa1a2(x) = Fa1(a2 · x)Fa2(x) (a1,a2, x ∈ G).

(Uaf )(x) := Fa−1(x)f (a−1x) (a, x ∈ G)

satisfies

Ua1 ◦ Ua2 = Ua1·a2 (a1,a2 ∈ G),

so the above defined Uaf is a representation of G on
the space of all complex valued functions on G.
If Fa is continuous and bounded for every a ∈ G, then
L2

m(G) is an invariant subspace and (Ua)a∈G is a
representation on L2

m(G). The representations obtained
this way are called multiplier representations.
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Results of Pap and Schipp, 2006

If (Ux )x∈G is a unitary multiplier representation of G on
L2

m(G) generated by Fa ∈ L∞m (G) ∩ C(G) (a ∈ G) , then
Vρ ◦ Ua = La ◦ Vρ;
Vρ ◦ La = La ◦ Vρ ◦Ma;
(Vρf )(x) = (Vρf )(x−1) (a, x ∈ G, ρ ∈ H).

The representation of the Blaschke group on L2(T)
generated by the multiplier

Fa(eit ) :=
√
β′(t) · ei βa(t)−t

2 (a ∈ B; t ∈ I) (3)

is a unitary representation of the Blaschke group on
L2(T).
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Notions: dyadic intervals, dyadic squares, Haar
measure, Lp- norm

The set of bits A := {0,1}
The set of bytes

B := {a = (aj , j ∈ Z) | aj ∈ {0,1} and lim
j→−∞

aj = 0}

The order of a byte x ∈ B: For x 6= θ := (0,0, · · · ) let
π(x) = n if and only if xn = 1 and xj = 0 for all j < n.
Set π(θ) := +∞.
The norm of a byte x is defined by ‖x‖ := 2−π(x) for
x ∈ B \ {θ}, and ‖θ‖ := 0.
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Sets

An interval in B of rank n ∈ Z and center a ∈ B:
In(a) = {x ∈ B : xj = aj for j < n}.
In := In(θ) = {x ∈ B : ‖x‖ 5 2−n} for any n ∈ Z.
The unit ball is I := I0.
S := {x ∈ B : ‖x‖ = 1} = {x ∈ B : π(x) = 0} = {x ∈ I :
x0 = 1} is the unit sphere.
Note, that ◦ when used between functions, denotes
function composition.
µ: the right and left invariant Haar measure with
µ(Gm) = 1.
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Characters

Rademacher system: (rn,n ∈ N) with
rn(x) := (−1)xn (x ∈ I),
the Walsh-Paley functions:

wk (x) =
∞∏

n=0

(rn(x))kn = (−1)
∑+∞

j=0 kj xj (x ∈ I),

with dyadic expansion k =
∑∞

j=0 kj2j ∈ N (kj ∈ A).

v2n (x) := exp
(

2πı
(xn

2
+

xn−1

22 + · · ·+ x0

2n+1

))
(x ∈ I,n ∈ N),

vm(x) =
∞∏

j=0

(v2j (x))mj (m ∈ N).

.
(wn,n ∈ N) is the character system of (I,

◦
+)

(vn,n ∈ N) is the character system of (I,
•
+).



SIMON

Motivation for
dyadic and
2-adic
analysis

Historical
background
for the voice
transformation

Introduction

The represen-
tations of the
dyadic and
2-adic
Blaschke
groups

Projection
operator

The dyadic sum
◦
+ and 2-adic sum

•
+

The dyadic sum a
◦
+ b of elements a,b ∈ B is defined

by
a
◦
+ b := (an + bn (mod 2), n ∈ Z) .

The 2-adic sum a
•
+ b of elements

a = (an,n ∈ Z),b = (bn,n ∈ Z) ∈ B is defined by

a
•
+ b := (sn,n ∈ Z) where the bits qn, sn ∈ A (n ∈ Z)

are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},
and an + bn + qn−1 = 2qn + sn for n ≥ m.
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The dyadic product ◦ and 2-adic product •

dyadic product a ◦ b of elements a,b ∈ B is defined by
a ◦ b := (cn,n ∈ Z), where cn =∑

k∈Z akbn−k (mod 2) (n ∈ Z).

The 2-adic product of a,b ∈ B is a • b := (pn,n ∈ Z),
where the sequences qn ∈ N and pn ∈ A (n ∈ Z) are
defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and
∞∑

j=−∞
ajbn−j + qn−1 = 2qn + pn (n ≥ m).
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The additive inverse of
•
+

The reflection x− of a byte x = (xj , j ∈ Z) is defined by:

(x−)j :=

{
xj , for j 5 π(x)

1− xj , for j > π(x).

e := (δn0,n ∈ Z), where δnk is the Kronecker-symbol.

We will use the following notation: a
•
− b := a

•
+ b−.
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The dyadic Blaschke function, 2006

For a ∈ I1 the dyadic Blaschke function on (I,
◦
+, ◦) is

defined by:

Ba(x) := (x
◦
+ a)◦(e

◦
+ a◦x)−1 =

x
◦
+ a

e
◦
+ a ◦ x

(x ∈ I).

Since π(a) = 1 and π(x) = 0, we have π(a ◦ x) = 1,

therefore we have π(e
◦
+ a ◦ x) = 0, hence

e
◦
+ a ◦ x 6= θ. Thus the function Ba is well-defined on I.

Note, that π(u ◦ v−1) = π(u)− π(v) (u, v ∈ B), thus

‖Ba(x)‖ 5 1 if ‖x‖ 5 1, and ‖Ba(x)‖ = 1 if ‖x‖ = 1.
(4)
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Ba is a bijection on the "disc" and the "torus"

Ba is a bijection on the unit ball I and on the unit sphere
S := S0 = {x ∈ B | ‖x‖ = 1}.
B−1

a = Ba.

For a,b ∈ I1,

Ba(Bb(x)) = Bc(x) (x ∈ I), where c =
a
◦
+ b

e
◦
+ a ◦ b

= Ba(b) ∈ I1.

The maps Ba (a ∈ I1) form a commutative group with
respect to the composition of functions.
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The recursive form of the byte Ba(x):

With y = Ba(x) we have y = x
◦
+ a

◦
+ y ◦ a ◦ x . So,{

yn = 0, for n < 0,
yn = xn + an + (y ◦ a ◦ x)n (mod 2), for n = 0.

As the n-th digit of y ◦ a ◦ x depends only on a and xk -s with
k < n, we have that y = Ba(x) can be written in the form

yn = xn + an + fn(x0, · · · , xn−1) (mod 2) (5)

where the functions fn : An → A (n = 1,2, · · · ) depend only
on the bits of a.
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The 2-adic Blaschke-function, 2006

For a ∈ I1 the 2-adic Blaschke function on (I,
•
+, •) is

defined by:

Ba(x) := (x
•
− a)•(e

•
− a•x)−1 =

x
•
− a

e
•
− a • x

(x ∈ I).

For x ∈ I and a ∈ I1 we have that e
•
− a • x 6= θ, thus

e
•
− a • x has a multiplicative inverse in B, and so the

function is well-defined.
Ba : I→ I is a bijection for any a ∈ I1 on I, and on S ⊂ I
as well.
the inverse of Ba is B−1

a = Ba− .

‖Ba(x)‖ = 1 iff ‖x‖ = 1.
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The Blaschke group

Ba ◦ Bb = Bc , where c = a
•
+b

e
•
+a•b

∈ I1 (a,b ∈ I1).

With notation a / b := a
•
+b

e
•
+a•b

∈ I1 (a,b ∈ I1) we have

Ba ◦ Bb = Ba/b (a,b ∈ I1).
The maps Ba (a ∈ I1) form a commutative group with
respect to the composition of functions. The identity
element: Bθ = ı, the inverse element of Ba is Ba− .

Definition

Consider B := {Ba,a ∈ I1}. (B, ◦) when using the 2-adic

operations is called the 2-adic Blaschke-group of (I,
•
+, •).

(B, ◦) when using the dyadic operations is called the dyadic
Blaschke-group of (I,

◦
+, ◦).
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The recursive form of the byte Ba(x)

The digit yn = (Ba(x))n can be written in the form

yn = xn + fn(x0, · · · , xn−1) (mod 2)

where the functions fn : An → A (n = 1,2, · · · ) depend only
on the bits of a.



SIMON

Motivation for
dyadic and
2-adic
analysis

Historical
background
for the voice
transformation

Introduction

The represen-
tations of the
dyadic and
2-adic
Blaschke
groups

Projection
operator

Ba : I→ I is measure preserving

The variable transformation Ba : I→ I is measure
preserving for each a ∈ I1. Hence,∫

I
f ◦ Badµ =

∫
I
fdµ (f ∈ L1(I)). (6)
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An example

For example, the dyadic and 2-adic sums of a and b,

a = (· · · ,
−1
0 ,

0
0,

1
1,

2
0,

3
1,

4
0,

5
1, · · · )

b = (· · · ,
−1
0 ,

0
0,

1
0,

2
1,

3
1,

4
1,

5
1, · · · )

are the following: a
◦
+ b = (· · · ,

−1
0 ,

0
0,

1
1,

2
1,

3
0,

4
1,

5
0, · · · ),

a+b = (· · · ,
−1
0 ,

0
0,

1
1,

2
1,

3
0,

4
0,

5
1, · · · ).
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Constructing dyadic and 2-adic multipliers

Let us construct first a collection of multiplier functions
which are the dyadic and 2-adic counterparts of the
classical sense multiplier functions.

Definition

For the dyadic field (I,
◦
+, ◦) let us define the function with

parameters a ∈ I1, k ≥ 1 defined as

Fa,k (t) := wk (Ba(t)
◦
+ t) (t ∈ I). (7)

Definition

For the 2-adic field (I,
•
+, •) let us define the function with

parameters a ∈ I1, k ≥ 1 defined as

Fa,k (t) := vk (Ba(t)
•
− t) (t ∈ I). (8)
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Fa,k (a ∈ I1, k ≥ 1) are multipliers

We will use the same notation for these groups, as it does
not cause any confusion.

Theorem

The above defined functions Fa,k (a ∈ I1, k ≥ 1) are

multipliers of groups (I,
◦
+) and (I,

•
+) correspondingly.

Proof: Using the character property of vk and wk we find:

Fa14a2,k (t) = wk (Ba14a2(t)
◦
+ t) =

= wk

(
Ba1(Ba2(t))

◦
+ Ba2(t)

)
wk

(
Ba2(t)

◦
+ t
)

=

= Fa1,k (Ba2(t))Fa2,k (t)

Fa14a2,k (t) = wk (Ba14a2(t)
◦
+ t) = wk

(
Ba1(Ba2(t))

◦
+ Ba2(t)

)
wk

(
Ba2(t)

◦
+ t
)

=

= Fa1,k (Ba2(t))Fa2,k (t).
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Unitary representation of the dyadic and 2-adic
Blaschke groups

Definition

The representation of the Blaschke group on L2(I)
generated by this multiplier is given by

(Ua,k f )(x) := Fa−1,k (x) · (f ◦ Ba−1)(x) (a ∈ I1).

Thus, in the dyadic case,
(Ua,k f )(x) = wk (Ba(x)

◦
+ x)f (Ba(x)), while in the 2-adic

case (Ua,k f )(x) = vk (Ba(x)
•
− x)f (Ba−1(x)).

Theorem

The function collection (Ua)a∈I1 given as above is a unitary
representation of the Blaschke group on L2(I).
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Proof-Part 1

We will show that a→ Ua,k defined by the above formula is
a multiplier representation of (B, ◦). First, we have to check
whether

Ua1,k ◦ Ua2,k = Ua14a2,k (a1,a2 ∈ I1, k ∈ Z)

holds. The multiplier property
Fa14a2,k (x) = Fa1,k (Ba2(x))Fa2,k (x) and property
Ba ◦ Bb = Ba/b (a,b ∈ I1) imply that

Ua1,k (Ua2,k f )(t) = Ua1,k

(
Fa−1

2 ,k (t) · f
(

Ba−1
2

(t)
))

=

= Fa−1
1 ,k (t) · Fa−1

2 ,k (Ba−1
1

(t)) · f
(

Ba−1
2

(Ba−1
1

(t))
)

=

= Fa−1
2 4a−1

1 ,k (t) · f (Ba−1
2 4a−1

1
(t)) =

= [F(a14a2)−1,k · f ◦ B(a14a2)−1)](t) =
(
Ua14a2,k f

)
(t).
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Proof-Part 2

The considered representation is unitary in the Hilbert
space H2(I) with respect to the inner product
〈f ,g〉 := 1

2π

∫
I f (t)g(t)dt (f ,g ∈ H2(I)). Indeed, as the

Blaschke functions are measure-preserving
transformations, we get

〈Ua,k f ,Ua,kg〉 =
1

2π

∫
I
f (Ba−1(t)) g (Ba−1(t)) dt =

= 〈f ,g〉.
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The voice transform

The voice transform of f ∈ H generated by the
representation U.,k and by the parameter ρ ∈ H is the
(complex- valued) function on I1 defined by

(Vρf )(x) := 〈f ,Ux ,kρ〉 (x ∈ I1, f , ρ ∈ H = L2(I)).
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Corollary

If (Ux )x∈I1 is a unitary multiplier representation of I1 on
L2

m(I) generated by Fa ∈ L∞m (I) ∩ C(I) (a ∈ I1) , then
Vρ ◦ Ua = La ◦ Vρ;
Vρ ◦ La = La ◦ Vρ ◦Ma;
(Vρf )(x) = (Vρf )(x−1) (a, x ∈ I, ρ ∈ H).
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In the definition of the complex discrete Laguerre functions
we find the trigonometric system. The functions
corresponding to the trigonometric system
(eikt , k ∈ Z) (t ∈ R) will be now the characters of the group

(I,
◦
+), namely the Walsh-Paley functions (wk , k ∈ N)

presented in (??).
The dyadic discrete Laguerre functions associated to Ba
with parameter a ∈ I1 by

L(a)
k (x) := wk (Ba(x)) (k ∈ N, x ∈ I). (9)
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For a ∈ I1 consider the functions rn ◦ Ba (x ∈ I, n ∈ N).
(Here ◦ stands for function-composition.)
The dyadic discrete Laguerre system (L(a)

k , k ∈ N) is the
product system generated by (rn ◦ Ba,n ∈ N):

L(a)
k (x) =

∞∏
n=0

[rn(Ba(x))]kn .
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As before, the functions corresponding to the orthonormed
system (eikt , k ∈ Z, t ∈ R) will be the characters of the group

(I,
•
+), namely the functions (vk , k ∈ N) presented in (??).

The 2-adic discrete Laguerre functions associated to Ba
are defined in the following way:

L(a)
k (x) := vk (Ba(x)) (k ∈ N, x ∈ I). (10)

For a ∈ I1 and n ∈ N consider the functions v2n ◦ Ba on I.
The arithmetical discrete Laguerre system (L(a)

k , k ∈ N) is
the product system generated by (v2n ◦ Ba,n ∈ N):

L(a)
k (x) =

+∞∏
j=0

[v2j (Ba(x))]kj (x ∈ I).

These form an orthogonal basis on L2(I) for all a ∈ I1.



SIMON

Motivation for
dyadic and
2-adic
analysis

Historical
background
for the voice
transformation

Introduction

The represen-
tations of the
dyadic and
2-adic
Blaschke
groups

Projection
operator

Dyadic projection operator

Consider
Vwm f (a−1) = 〈f ,Ua−1,mwm〉.

Definition:

Pf (a, x) :=
∞∑

m=0

(Vwm f )(a−1)La,m(x) (a ∈ I1, x ∈ I),

where the infinite sequence is absolute convergent for x ∈ I.
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2-adic projection operator

Consider
Vvm f (a−1) = 〈f ,Ua−1,mvm〉.

Definition:

Pf (a, x) :=
∞∑

m=0

(Vvm f )(a−1)La,m(x) (a ∈ I1, x ∈ I),

where the infinite sequence is absolute convergent for x ∈ I.
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Conjecture:
For every f ∈ H2(S) and a ∈ I, we have

lim
‖z‖→1

Pf (a, z) = f (x) ?
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Thank you for your attention!
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