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Beginning

Gauss sums are the following quantities Sn(a, p)

Sn(a, p) =
∑

0≤x≤p−1
exp{2πi ax

n

p
}.

Let G be multiplicative subgroup of the �eld with p elements

Let S(a,G ) be the following expression

S(a,G ) =
∑

g∈G exp{2πi ag
p
}.
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History

If G� is a subroup of quadratic residues, the following sums

can be found

S2,p(a) = i (
p−1
2

)2

(
a

p

)
√
p.

In general case we have an estimate

|S(a,G )| < √p.

There is a question for the upper nontrivial estimates for

|S(a,G )| where |G | ≤ √p.
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Applications of S(a,G )

Pseudorandom sequences;

Special equations, number of solutions;

Fermat quotients;

Distribution of elements of multiplicative subgroups.
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For integer m ≥ 1 let Tm(G ) be the number of solutions of

the following equation

x1 + . . .+ xm = y1 + . . .+ ym (mod p), xi , yj ∈ G .

Upper estimates for |S(a,G )| can be obtained from the

following inequality

Òåîðåìà

For any positive integers m, l we have :

|S(a,G )| ≤ (pTl (G )Tm(G ))
1

2lm |G |1−
1
l
− 1

m .
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Estimates for Tk

D.R. Heath-Brown and è S.V. Konyagin proved the following

result, based on S.A. Stepanov's method, (the case m = 2);

later S.V. Konyagin obtained for all m > 2.

Òåîðåìà

For any integer m there is C (m), such that for all p,G, with

t = |G | < p2/3, m = 2 or t = |G | < p1/2, m > 2, we have

Tm(G ) ≤ C (m)t2m−2+
1

2m−1 .

It allowed to deduce the following result.

Òåîðåìà

There exists the function C (ε) > 0, such that if

|G | > p1/4+ε, then we have

|S(a,G )| = O(|G |p−C(ε)).
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Next progress

Yu. Malykhin obtained nontrivial estimates for Tk and

S(a,G ) in the case G ⊆ (Z/p2Z)∗ and proposed a method

for such estimates in Z/pkZ.
J.Borgain and S.V. Konyagin obtained the following result

with combinatorial arguments

Òåîðåìà

There exists a function C (ε) > 0, such that if |G | > pε, then

we have

|S(a,G )| = O(|G |p−C(ε)).

J. Bourgain obtained such result for all composite numbers q
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Òåîðåìà

(I. Shkredov, 2014) If t = |G | ≤ √p then we have

T2(G ) = O(t2
1
2
−C(α)(log t)C ),

where C− is some positive function and t = pα.

Òåîðåìà

(I.S, 2015) If t = |G | ≤ √p then we have

T3(G ) = O(t4
3
14 (log t)C ),

where C− is some absolute constant.

Òåîðåìà

(B. Murphy, M. Rudnev, I. Shkredov, Yu. Sh., 2017) If

t = |G | ≤ √p then we have

T3(G ) = O(t4 log t).
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Elements of the proof

Denote the quantity

r3(a) = |{(x1, x2, x3) ∈ G 3 : x1 − x2 − x3 = a}|.
We see that

T3(G ) =
∑
a

r23 (a).

Consider the map (u, v ,w , z) ∈ G 4 −→ (uv , uz ,wv) ∈ G 4.

This is a surjective homomorphism which kernel consists of

|G | elements.

r3(a) =
1

|G |
∑
w ,z

r(G−w)(G−z)(a + wz),

where

r(G−w)(G−z)(l) = |{(g1, g2) ∈ G 2 : (g1 − w)(g2 − z) = l}|.
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Elements of the proof

T3(G ) =
1

|G |2
∑
a

(
∑
z,w

r(G−w)(G−z)(a + wz))2.

Using standart inequality and we have to deal with the sum∑
z,w

∑
a

r2(G−w)(G−z)(a + wz).

This is the number of solutions of the equation

(u1 − w)(v1 − z) = (u2 − w)(v2 − z).

Points (u1, v2), (w , z), (u2, v1) belongs to one line.

and we have to estimate the number of collinear triples

From the results of S.V. Konyagin (or D.A. Mitkin) this

quantity is easily estimated.
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Thank you for your attention


