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Beginning

Gauss sums are the following quantities Sp(a, p)

S”(aap) = Z

0<x<p-1

n
exp{27ria%}.
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Gauss sums are the following quantities Sp(a, p) "I Shkredov)
.ax"
Sn(a,p) = Z exp{2mi—}.
0<x<p-1 P

Let G be multiplicative subgroup of the field with p elements

Let S(a, G) be the following expression
S(a,G) = 3 ,cc exp{2mi®t}.
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History

If G- is a subroup of quadratic residues, the following sums
can be found

(P—1y2 a
S2.p(a) =iz 2 VP
p
In general case we have an estimate

1S(a, G)| < /p.
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(P—1y2 a
S2.p(a) =iz 2 VP
p
In general case we have an estimate

1S(a, G)| < /p.

There is a question for the upper nontrivial estimates for

|S(a, G)| where |G| < /p.
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Pseudorandom sequences;
Special equations, number of solutions;
Fermat quotients;

Distribution of elements of multiplicative subgroups.
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xt+...+Xm=y1+...+ym (mod p),xi,y; €G.




For integer m > 1 let T,,(G) be the number of solutions of
the following equation

X1+ ...+ Xm=y1+... +ym (mod p),x,yj€G.

Upper estimates for |S(a, G)| can be obtained from the
following inequality

Teopema
For any positive integers m, | we have :

1_1
I m,

1S(a, G)| < (PTi(G) Tm(G))2im |G|+
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Estimates for Ty

D.R. Heath-Brown and n S.V. Konyagin proved the following
result, based on S.A. Stepanov’s method, (the case m = 2);
later S.V. Konyagin obtained for all m > 2.

Teopema

For any integer m there is C(m), such that for all p, G, with
t=1|G| < p*3 m=2ort=|G| < p'? m>2, we have

Tm(G) < C(m)2™ 2t amt,
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Estimates for Ty

D.R. Heath-Brown and n S.V. Konyagin proved the following
result, based on S.A. Stepanov’s method, (the case m = 2);
later S.V. Konyagin obtained for all m > 2.

Teopema
For any integer m there is C(m), such that for all p, G, with
t=1|G| < p*3 m=2ort=|G| < p'? m>2, we have

1

Tm(G) < C(m)t?™ *ram—1,

It allowed to deduce the following result.

Teopema

There exists the function C(g) > 0, such that if
|G| > p'/4*¢, then we have

S(a, 6)l = 0(/G|p~<)).
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Next progress

Yu. Malykhin obtained nontrivial estimates for T, and
S(a, G) in the case G C (Z/p*Z)* and proposed a method
for such estimates in Z/p*Z.
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Next progress

Yu. Malykhin obtained nontrivial estimates for T, and
S(a, G) in the case G C (Z/p*Z)* and proposed a method
for such estimates in Z/p*Z.

J.Borgain and S.V. Konyagin obtained the following result
with combinatorial arguments

Teopema

There exists a function C(g) > 0, such that if |G| > p®, then
we have

[S(a, G)| = O(IG|p~ 1))
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Next progress

Yu. Malykhin obtained nontrivial estimates for T, and
S(a, G) in the case G C (Z/p*Z)* and proposed a method
for such estimates in Z/p*Z.

J.Borgain and S.V. Konyagin obtained the following result
with combinatorial arguments

Teopema

There exists a function C(g) > 0, such that if |G| > p®, then
we have

[S(a, G)| = O(IG|p~ 1))

J. Bourgain obtained such result for all composite numbers g
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Teopema
(I. Shkredov, 2014) If t = |G| < \/p then we have

T2(G) = 0(£2~<(log 1)),
where C— is some positive function and t = p©.

Teopema
(1.5, 2015) If t = |G| < \/p then we have

T3(G) = O(t*74 (log t)€),

where C— is some absolute constant.
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Teopema
(I. Shkredov, 2014) If t = |G| < \/p then we have

T2(G) = O(22~(log £)°),

where C— is some positive function and t = p©.

Teopema
(1.5, 2015) If t = |G| < \/p then we have

T3(G) = O(t*i (log £)°),
where C— is some absolute constant.

Teopema
(B. Murphy, M. Rudnev, I. Shkredov, Yu. Sh., 2017) If
t = |G| < \/p then we have

T3(G) = O(t* log t).
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Elements of the proof

Denote the quantity
rs(a) = [{(x1,x2,x3) € G3:x1—xp—x3 = at|.

We see that
T5(G) =) _r(a).

a
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Consider the map (u, v, w,z) € G* — (uv, uz,wv) € G*.
This is a surjective homomorphism which kernel consists of
|G| elements.




Elements of the proof

Denote the quantity
rs(a) = [{(x1,x2,x3) € G3:x1—xp—x3 = at|.

We see that
T5(G) =) _r(a).

a

Consider the map (u, v, w,z) € G* — (uv, uz,wv) € G*.
This is a surjective homomorphism which kernel consists of
|G| elements.

1
r3(a) = Gl > rG-wyG-z(a+wz),

where
rG-wyG—2)(1) = {(g1. &) € G?: (g1 — w)(g2 — 2) = I}|.
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Elements of the proof

1
T3(G) = @ Z(Z r(G—W)(G—z)(a + Wz))z-
a z,w
Using standart inequality and we have to deal with the sum

Z Z rfG_W)(G_z)(a + wz).
zw a

This is the number of solutions of the equation

(nn —w)(vi —z) = (12 — w)(vp — z2).
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Elements of the proof

T3(G) = |G‘2Z Z f(G-w)(G-z)(a+wz))%.

Using standart inequality and we have to deal with the sum

Z Z rfG_W)(G_z)(a + wz).
zw a

This is the number of solutions of the equation
(nn —w)(vi —z) = (12 — w)(vp — z2).

Points (u1, v2), (w, z), (uz2, v1) belongs to one line.
and we have to estimate the number of collinear triples
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Elements of the proof

1
T3(G) = @ Z(Z r(G—W)(G—z)(a + Wz))z-
a z,w

Using standart inequality and we have to deal with the sum

Z Z rfG_W)(G_z)(a + wz).
zw a

This is the number of solutions of the equation
(nn —w)(vi —z) = (12 — w)(vp — z2).

Points (u1, v2), (w, z), (uz2, v1) belongs to one line.

and we have to estimate the number of collinear triples
From the results of S.V. Konyagin (or D.A. Mitkin) this
quantity is easily estimated.
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