Sumsets and the Prékopa-Leindler inequality

Imre Z. Ruzsa

Joint work in (slow) progress with Dávid Matolcsi, George Shakan, Dmitrii Zhelezov

Induced doubling

G commutative torsionfree group (\mathbb{Z}^d)

 $V \subset G$ finite

Definition

$$\alpha''(V) = \inf_{A \subset G, A \supset V} \frac{|A + A|}{|A|}$$

the induced doubling of V

Examples: S_d the d-dimensional simplex, $\alpha''(S_d) = 1 + d/2$ $K_d = \{0,1\}^d$, discrete cube: $\sqrt{2}^d \le \alpha''(K_d) \le (3/2)^d$ (Green-Tao)

Variants

Two sets better than one set repeated:

Definition

The *induced doublings* of U are the quantities

$$\alpha(U) = \inf_{A \supset U, B \supset U} \frac{|A + B|}{\sqrt{|A||B|}},$$

$$\alpha'(U) = \inf_{A \supset U, B \supset U, |A| = |B|} \frac{|A + B|}{|A|},$$

$$\alpha''(U) = \inf_{A \supset U} \frac{|A + A|}{|A|},$$

the unrestricted, isometric, isomeric induced doubling.

Conjecture

$$\alpha(U) = \alpha'(U) = \alpha''(U).$$

We know only $\alpha(U) \leq \alpha'(U) \leq \alpha''(V) \leq \alpha(U)^2$

Tripling

3 sets better than 2

Definition

The *triplings* of *U* are the quantities

$$\beta(U) = \inf_{A,B} \frac{|A+B+U|}{\sqrt{|A||B|}},$$

$$\beta'(U) = \inf_{A,B, |A|=|B|} \frac{|A+B+U|}{\sqrt{|A||B|}},$$

$$\beta''(U) = \inf_{A} \frac{|A+A+U|}{|A|},$$

the unrestricted, isometric, isomeric tripling.

Examples: $K_d = \{0,1\}^d$, discrete cube:

$$\beta(K_d) = \beta'(K_d) = \beta''(K_d) = 2^d.$$

 S_d the d-dimensional simplex,

$$\beta(S_d) = \beta'(S_d) = \beta''(S_d) = d + 1$$

Conjecture

$$\beta(U) = \beta'(U) = \beta''(U).$$

We know only $\beta(U) \leq \beta'(U) \leq \beta''(V) \leq \beta(U)^2$.

Tripling and induced doubling

Theorem

$$\alpha(U) \leq \beta(U) \leq \alpha(U)^2$$
.

Problem

How tight are these inequalities?

We have $\beta(K_d) = 2^d$, $2^{d/2} \le \alpha(K_d) \le (3/2)^d$, so the second inequality is pretty tight, definitely no lower exponent than $\log 2/\log(3/2)$.

For a large cube $K = \{1, 2, ..., n\}^d$ we know $\beta(K) = 2^d$, $\alpha''(K) > 2^d - \varepsilon$, so if $\alpha = \alpha''$, then the first is tight.

Weights: sumset and max-convolution

Functions better than sets.

Consider functions $f: G \to \mathbb{R}_{>0}$ with finite support.

Definition

The max-convolution of two functions is

$$f = g(x) = \max_{t} f(t)g(x-t).$$

Generalizes addition of sets: $\mathbf{1}_A \overline{*} \mathbf{1}_B = \mathbf{1}_{A+B}$.

 $\|\mathbf{1}_{A}\|_{c}^{c} = |A|$ for any c > 0.

Generalized cardinality: the distribution function of f is

$$F(t) = |\{x : f(x) > t\}|$$

If f, g have the same distribution, write $f \sim g$.

$$1_A \sim 1_B \text{ iff } |A| = |B|.$$

Functional tripling

Definition

The triplings of a function f are

$$\gamma(f) = \inf_{g,h} \frac{\|f \cdot \overline{g} \cdot g \cdot h\|_1}{\|g\|_2 \|h\|_2}.$$

$$\gamma'(f) = \inf_{g \sim h} \frac{\|f \cdot \overline{g} \cdot g \cdot h\|_1}{\|g\|_2 \|h\|_2},$$

$$\gamma''(f) = \inf_{g} \frac{\|f \cdot \overline{g} \cdot g \cdot g\|_1}{\|g\|_2^2},$$

the unrestricted, isometric, isomeric tripling.

Conjecture

$$\gamma = \gamma' = \gamma''$$
.

Tripling and functional tripling

Theorem

Let U be any finite set in a commutative group. We have

$$\beta(U) = \gamma(\mathbf{1}_U), \ \beta'(U) = \gamma'(\mathbf{1}_U), \ \beta'(U) = \gamma''(\mathbf{1}_U).$$

Multiplicativity of functional tripling

Let $G = G_1 \times G_2$, $f_i : G_i \to \mathbb{R}_{\geq 0}$, define $f : G \to \mathbb{R}_{\geq 0}$ by $f(x,y) = f_1(x)f_2(y)$.

Theorem

$$\gamma(f) = \gamma(f_1)\gamma(f_2).$$

Corollary

If
$$V_i \subset G_i$$
, $V = V_1 \times V_2$, then $\beta(V) = \beta(V_1)\beta(V_2)$.
In particular, $\beta(K_d) = \beta(\{0,1\})^d = 2^d$.

Tripling and functional tripling: proof

We prove $\beta(U) = \gamma(\mathbf{1}_U)$. Recall

$$\beta(U) = \inf_{A,B} \frac{|A+B+U|}{\sqrt{|A||B|}} = \inf_{A,B} \frac{\|\mathbf{1}_{U} \cdot \mathbf{1}_{A} \cdot \mathbf{1}_{B}\|_{1}}{\|\mathbf{1}_{A}\|_{2} \|\mathbf{1}_{B}\|_{2}}$$
$$\gamma(\mathbf{1}_{U}) = \inf_{g,h} \frac{\|\mathbf{1}_{U} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \mathbf{h}\|_{1}}{\|g\|_{2} \|h\|_{2}}.$$

Clearly $\beta(U) \geq \gamma(\mathbf{1}_U)$. Need to prove $\beta(U) \leq \gamma(\mathbf{1}_U)$, that is,

$$\|\mathbf{1}_{U} * g * h\|_{1} \geq \beta(U) \|g\|_{2} \|h\|_{2}$$
.

Proof of $\|\mathbf{1}_{U} * g * h\|_{1} \ge \beta(U) \|g\|_{2} \|h\|_{2}$

Assume $\max g = \max h = 1$. Put $f = \mathbf{1}_U \, \overline{*} \, g \, \overline{*} \, h$. Let

$$\mathcal{F}(t) = \{x : f(x) \ge t\}, t \in [0, 1]; F(t) = |\mathcal{F}(t)|,$$

similarly G(t), G(t), H(t), H(t) from g, h. For t = xy

$$\mathcal{F}(t)\supset\mathcal{G}(x)+\mathcal{H}(y)+U$$

$$F(t) \ge \beta(U) \max_{xy=t} \sqrt{G(x)H(y)}.$$

$$||f||_1 = \int_0^1 F(t) dt \ge$$

$$\geq \beta(U) \int_0^1 \max_{\substack{xy=t}} \sqrt{G(x)H(y)} dt =?$$

Lemma

$$\int_{0}^{1} \max_{xy=t} \sqrt{G(x)H(y)} dt \ge$$

$$\ge \sqrt{\int_{0}^{1} G(\sqrt{t}) dt} \int_{0}^{1} H(\sqrt{t}) dt = \|g\|_{2} \|h\|_{2}.$$

Lemma (Prékopa-Leindler inequality (special case)) If always

$$\varphi\left(\frac{x+y}{2}\right) \ge \sqrt{\mu(x)\nu(x)}$$

then $\|\varphi\|_1 \ge \sqrt{\|\mu\|_1 \|\nu\|_1}$.

To get the needed lemma, apply Prékopa-Leindler with

$$\mu(x) = G(e^x)e^{2x}, \quad \nu(x) = H(e^x)e^{2x}$$

$$\varphi(t) = e^{2t} \max_{x+y=t} \sqrt{G(e^{2x})H(e^{2y})}.$$

Generalized direct product

Let $G = G_1 \times G_2$, $V_1 \subset G_1$, for each $v \in V_1$ given a $W_v \subset G_2$ and

$$V = \bigcup_{v \in V_1} v \times W_v.$$

Theorem

$$\beta(V) \geq \beta(V_1) \min b(W_{\nu}).$$

Theorem (functional version)

Let f be a function on G. For $x \in G_1$ put $f_x(y) = f(x, y)$, a function on G_2 , and $\varphi(x) = \gamma(f_x)$.

$$\gamma(f) \geq \gamma(\varphi)$$
.

Starting point

Theorem

Let f be a function supported on 2 points. Then $\gamma(f) = ||f||_1$.

Generalized cube

A *generalized cube* is obtained from 2-element sets by generalized direct product.

1-dimensional generalized cube: any 2-element set.

d+1 -dimensional g.c.: a set homothetic to

 $(0 \times V) \cup (1 \times W)$, where V, W are d -dimensional g. cubes.

(Fairly general 2^d -element d-dimensional set.)

E.g. 2-dimensional g.c.: trapezoid.

Theorem

Let U be a d-dimensional quasicube. For every $V \subset U$ we have

$$\beta(V) = |V|, \quad \alpha(V) \ge |V|^{1/2}.$$

In particular

$$\beta(U)=2^d, \quad \alpha(U)\geq 2^{d/2}.$$

A Brunn-Minkowski variation

Theorem

Let U be a d-dimensional quasicube. For any finte sets A, B we have

$$|A + B + U|^{1/d} \ge |A|^{1/d} + |B|^{1/d}$$
.

Dependence matroid

Conjecture

Let V be finite set with the property that for any $k \leq \dim V$ and k-dimesional subset of V has at most 2^d elements. We have

$$\beta(V) = |V|, \quad \alpha(V) \ge |V|^{1/2}.$$

Conjecture

Let U,V be finite sets of equal cardinality, $\varphi:U\to V$ a bijection. If for every $U'\subset U$ we have $\dim \varphi(U')\leq \dim U'$, then $\beta(V)\leq \beta(U)$. In particular, if always $\dim \varphi(U')=\dim U'$, then $\beta(V)=\beta(U)$.

Continuity of α, β, γ

Problem

Are α, β, γ upper semicontinuous? If $A = \{a_1, \ldots, a_n\} \subset \mathbb{Q}^d$, is there an $\varepsilon > 0$ such that whenever $A' = \{a'_1, \ldots, a'_n\} \subset \mathbb{Q}^d$, $|a_i - a'_i| < \varepsilon$, then $\alpha(A') \geq \alpha(A)$ etc.?

The End