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Notation: p, pi , p′ ∈ P primes, m, n ∈ Z+ L(s, χ) Dirichlet’s
L-function

E(X ) = {n ≤ X ; 2 | n, n 6= p + p′}, |E(X )| = E (X ),
L = logX

(Binary) Goldbach Conjecture (BGC) (1742): E (X ) = 1 if
X > 2

(Ternary) Goldbach Conjecture (TGC): if n > 5,
2 - n⇒ n = p1 + p2 + p3

Landau (1912): “unattackable” at the present state of science

Hardy–Littlewood (1923–24): If L(s, χ) 6= 0 for Re s >
3
4
,

then TGC is true for n > n0, 2 - n.
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HL (1924) GRH ⇒ E (X ) = O(X 1/2+ε) for ∀ε > 0.

Circle method: Let m ∈ [X/2,X ], P <
√
X , Q = X/P

Major arcs M =
⋃
q≤P

⋃
a

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1
qQ

]

m =

[
1
Q
, 1 +

1
Q

]
−M, X1 = X 1−ε0 ,

S(α) =
∑

X1<p≤X
log pe(pα)

R(m) =
∑

p+p′=m
p,p′≥X1

log p · log p′ = R1(m) + R2(m)

R1(m) =
∫
M

S2(α)e(−mα)dα, R2(m) =
∫
m

S2(α)e(−mα)dα
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Traditional attack (HL, Vinogradov): If P is “sufficiently
small” compared to X , then

R1(m) ∼ S(m)m where

S(m) =
∏
p|m

(
1 +

1
p − 1

)∏
p-m

(
1− 1

(p − 1)2

)
.

Try to estimate R2(m) as |R2(m)| < R1(m)⇒ R(m) > 0, at
least on average (for most values of m ≤ N , or m = N − pi ,
pi ∈ P).
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HL (1923) could asymptotically evaluate R1(m) and estimate
well R2(m) on average by using the still today unproved

hypothesis L(s, χ) 6= 0 for Res >
3
4
. This led to a conditional

solution of TGC for n > n0.

Vinogradov (1937) – later Vaughan – proved

Theorem A:

S(α)�
(

X√
P

+ X 4/5
)
Lc if α ∈ m.

Theorem B: R1(m) ∼ S(m)m holds for P = LA for
∀ fixed A.

This was a Corollary of Siegel’s theorem (1936).
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Theorem A implies that |R2(m)| � X√
P
Lc on average, namely

X∑
m=X/2

R2
2 (m) =

∫
m

|S(α)|4dα ≤
(
max
α∈m
|S(α)|

)2
1∫

0

|S(α)|2dα

� max
(
X 2

P
,X 8/5

)
XLc

Theorem C (Vinogradov): TGC is true for n > n0.

Estermann, Van der Corput, Cudakov (1937–38):

E (X )�A
X

(logX )A
for ∀A > 0 (⇒ TGC).
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This implies the existence of inf. many 3-term AP’s in P (Van
der Corput) since E (X ) = o(π(X )).

Theorem D (Helfgott, 2013): TGC is true for n > 5, 2 - n.

Goal (in view of Theorem A): to increase P in such a way that
|R2(m)| < R1(m) should hold for m ∈ [X/2,X ] apart from a
“small” exceptional set E(X ).
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Theorem E (Montgomery–Vaughan, 1975): E (X ) < X 1−c0

with a not calculated but effective small c0 > 0.

Main idea: To evaluate R1(m) taking into account the effect
of the possibly existing single Siegel zero + use of Gallagher’s
theorem for primes in AP.

Choice of P : P = X c1 (c1 > 0, small)

Chen (1989) c0 = 0.05 (proof is incorrect).

Hongze Li (2000) c0 = 0.086⇐⇒ E (X )� X 0.914.

Theorem F (Wen Chao Lu, 2010):
c0 = 0.121⇐⇒ E (X )� X 0.879.

8 / 23



8

Main advantages:

(i) P can be chosen quite large, P = X 4/9−ε ⇒
(ii) estimates on the minor arc will be much better

(iii) it gives a characterisation of the possible exceptional m
values (in terms of some “bad primitive characters” and
their conductors) ⇐⇒

(iv) for a fixed m it determines the conductors of possible
“bad primitive characters” which might cause m ∈ E(X )

9 / 23



9

Which ones are the “bad primitive characters”?

Those which have low zeros near to Re s = 1.

Definition: E = E(H ,T ,P ,X ) the set of generalized

exceptional singularities of all primitive
L′

L
functions mod r ,

r ≤ P (χ0 = χ0(mod 1))

(%0, χ0) ∈ E if %0 = 1
(∗)
(%i , χi) ∈ E if ∃χi primitive, cond χi = ri ≤ P , L(%i , χi) = 0,

βi ≥ 1− H/ logX , |γi | ≤ T (% = β + iγ)

A(%) = 1 if % = 1, A(%) = −1 if % 6= 1
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Definition:S(χi , χj ,m) generalized exceptional singular series

S(χ0, χ0,m) := S(m) =
∏
p|m

(
1 +

1
p − 1

)∏
p-m

(
1− 1

(p − 1)2

)
.

Theorem 1. Let ε < ε0 and ε < ϑ < 4/9− ε be fixed,
m ∈ [X/2,X ] ∃P ∈ (X ϑ−ε,X ϑ) such that for X > X0(ε)

(1)

R1(m) =
∑
%i∈E

∑
%j∈E

A(%i)A(%j)S(χ1, χ2,m)
Γ(%i)Γ(%j)

Γ(%i + %j)
m%i+%j−1

+ Oε

(
S(m)Xe−c0H

)
+ Oε(X

1−ε0)
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Main lemma. |S(χ1, χ2,m)| ≤ S(m) always,

further |S(χ1, χ2,m)| ≤ S(m)√
U

log2
2 U , where

U = U(χ1, χ2,m) = max
(

r1
(m, r1)

,
r2

(m, r2)
, cond χ1χ2

)
Remark 1 (follows from a Theorem of Jutila). The total
number of characters in (∗) is

(2) K ≤ C1e
2H

Further we have ri � 42.
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Summary:Choosing H and T large constants, the total
number of zeros in (1) will be bounded and their contribution
will be negligible (O(ε)) unless

(3) |γi | ≤ T , cond χ1χ2 ≤ C (ε), ri | C (ε)m (i = 1, 2)

Remark 2. Siegel zeros cause a lot of trouble but the case of
their existence can be handled by an improved form of the
Deuring–Heilbronn phenomenon (J. P. 2019).
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So, suppose in the following that they do not exist.

Let m be given, ri (0 ≤ i ≤ K ) cond. of gen. exc. char.

Let Km =
{
0 ≤ i ≤ K ; ri | C (ε)m

}
K (m) = l.c.m. [ri , i ∈ Km].

Case 1. If K (m) > P , then the number of such m ∈ [X/2,X ]

is �ε
X

P
.

Case 2. If K (m) ≤ P , then l.c.m. [ri , rj ∈ Km] ≤ K (m) ≤ P

so there exists a q (depending on Km) such that all χi are
(may be not primitive) characters mod q.
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Corollary.

Remark 3: If A = logX/ logP then X−(δ1+δ2) ≤ e−A(δ1+δ2).

Theorem 2. (3) is true if q ≤ P = X 7/25 = X 0.28.

Remark 4. The proof of Theorem 2 uses a series of new
density theorems (extremely) near to Re s = 1.

This implies (using Theorem 1 and Theorem A)

Theorem 3. E (X )� X 0.72.
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1.) The Linnik–Goldbach problem

Theorem (Linnik 1951, 1953). Every sufficiently large even
number can be written as the sum of two primes and K

powers of two.

K = 54 000, GRH ⇒ K = 770 [Liu–Liu–Wang, 1998]

K = 25 000 (Hongze Li, 2000), GRH ⇒ K = 200 [LLW,
1999]

K = 2250, GRH ⇒ K = 160 (Wang, 1999)

K = 1906 (Hongze Li, 2001)
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Announcement (J. P., Debrecen, 2000) K = 12, GRH
⇒ K = 10

K = 13, GRH ⇒ K = 7 (Heath-Brown and Puchta, 2002)

(J. P. – Ruzsa, 2003) GRH ⇒ K = 7

Elsholtz K = 12

Theorem 4 (J. P. – Ruzsa). K = 8 unconditionally.

Main idea (beyond the work showing GRH ⇒ K = 7).

If the GRH is true, we can basically take P =
√
X .
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How can we get so close to the conditional result K = 7?

Answer: The explicit formula allows us to take P = X 4/9−ε

which implies e.g. S(α)� X 4/5Lc for α ∈ m.

Question: What happens on the major arcs?

Remark 5: We can not guarantee R1(m) > 0 for all m.
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Crucial point. Since – as mentioned in the summary to the
explicit formula – we know the “structure of the possible
exceptional set concerning the major arcs”, namely, a bounded
number of bad moduli and their multiples we have

Theorem 5. Under the above conditions

(4)
∑
ν≤L

R1(m − 2ν) = (1 + O(ε))
∑
ν≤L

S(m − 2ν)(m − 2ν).

2.) Goldbach numbers in thin sequences

Ek(N) =
{
n ≤ N ; 2nk 6= p + p′

}
|Ek(N)| = Ek(N)
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Are almost all numbers of the form 2nk Goldbach?

Perelli 1996: Yes, Ek(N)�A N(logN)−A for ∀A fixed.

Brüdern, Kawada, Wooley 2000: Ek(N)� N1−c/k .

Here c is a very small absolute constant (depending on a
crucial constant in Gallagher’s theorem).

Remark 6: The strongest known estimate E (X )� X 1/2+ε

under GRH (HL 1924) gives E2(N)� N1+ε which is worse
than the trivial estimate.
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Let us consider the special case k = 2.

BKW: E2(N)� N1−c1 c1 > 0 small, not calculated.

Theorem 6 (A. Perelli and J. P.): E2(N)� N4/5+ε.

Remark 7: We can show similar explicit results for small k
(k = 3, 4, 5, . . . ), further for k →∞ we can show

Ek(N)� N1−1/(5+ε)k for k > k0(ε).

21 / 23



21

Key ideas: (i) one can choose P ∈ [X 0.4,X 0.41]⇒
approximate formula works (Theorem 1).

(ii) in contrast to the Linnik–Goldbach problem we need also
Theorem 2 (actually a weaker form of it would be enough,
namely with X = N2∑
%1(χ1,q)∈E

∑
%2(χ2,q)∈E

cond(χiχj )<C(ε)

X−δ1−δ2 < 1− c2(ε) if q ≤ X 1/10 = N1/5

using the fact that
ri

(ri , 4)
are squarefree so “essentially”

ri | n⇐⇒ ri | n2
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(iii) in the minor arcs we use the nice method of BKW using
the Vinogradov–Vaughan’s estimate for S(α) and Weyl’s
inequality for estimating exponential sums over k-th powers

(iv) for k > 2 we use the deep estimates of Wooley and
Ford–Wooley.
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