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Schrödinger-type equation with a simple pole

Consider the second-order linear differential equation

d2w(z, u)

dz2
= (u2 f (z) + g(z))w(z, u),

where u is a large positive parameter and f (z) and g(z) are analytic
in a domain G except at a point z∗ ∈ G. In the neighbourhood of
this point, assume that

f (z) =
f−1

z − z∗
+ f0 + f1(z − z∗) + · · · ,

g(z) =
g−2

(z − z∗)2
+

g−1

z − z∗
+ g0 + g1(z − z∗) + · · · ,

with f−1 6= 0 and g−2 = 1
4 (µ

2 − 1), µ ∈ C \ Z+ 1
2 . We also assume

that there are no zeros of f (z) in G.
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Transformation into normal form

With the Liouville transformation

ξ
def
= ξ(z)

def
=

∫ z

z∗

√
f (t)dt, W(ξ, u)

def
= f 1/4(z)w(z, u),

the equation becomes

d2W(ξ, u)

dξ2
=

(
u2 + ψ(ξ)

)
W(ξ, u),

where

ψ(ξ)
def
=

g(z)

f (z)
+

4 f (z) f ′′(z)− 5 f ′2(z)
16 f 3(z)

.

Note that the function ψ(ξ) is even and has a double pole at ξ = 0.
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WKB solutions

It is known that if ψ(ξ) is analytic and bounded in a domain D,
then the equation has solutions W1,2(ξ, u) such that

W1(ξ, u) = euξ(1 + η1(ξ, u)), W2(ξ, u) = e−uξ(1 + η2(ξ, u)),

where η1(ξ, u), η2(ξ, u) = O(u−1) as u → +∞ and ξ lies in certain
subdomains of D.

With some further conditions on ψ(ξ) and D, we can identify the
solutions uniquely by requiring

lim
Reξ→−∞

e−uξW1(ξ, u) = 1

and
lim

Reξ→+∞
euξW2(ξ, u) = 1.
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WKB solutions

The asymptotics of W1,2(ξ, u) can be extended to asymptotic
expansions:

W1(ξ, u) ∼ euξ
∞

∑
n=0

An(−ξ)

un
,

W2(ξ, u) ∼ e−uξ
∞

∑
n=0

An(ξ)

un
,

as u → +∞ and ξ lies in appropriate domains. These are called the
WKB solutions, named after the physicists Wentzel, Kramers and
Brillouin. The coefficients satisfy the recurrence relation

An+1(ξ) =
1
2A

′
n(ξ) +

1
2

∫ ∞

ξ
ψ(t)An(t)dt,

with A0(ξ) ≡ 1. Here the integration is performed on a line parallel
to the real axis.
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Borel summation and connection formulae

We define

Dθ1,θ2
(γ)

def
= {ξ : |Imξ| < γ, θ1 < arg ξ < θ2, θ2 − θ1 ≥ π} .

Our first aim is to show that under certain conditions

W1(ξ, u) = euξ

(
1 +

∫ +∞

0
e−utF1(ξ, t)dt

)
,

W2(ξ, u) = e−uξ

(
1 +

∫ +∞

0
e−utF2(ξ, t)dt

)
,

where F1(ξ, t) and F2(ξ, t) are analytic functions in domains of the

form Dθ1,θ2
(γ)× Σ ⊂ Ĉ×C apart from some simple singularities.

Here Ĉ denotes the Riemann surface of the logarithm.

Our second aim is to determine the connection between these
solutions as ξ crosses the Stokes rays. On a Stokes ray, it holds
that Imξ = Im

∫ z
z∗

√
f (t)dt = 0.
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Motivation: formal Borel summation

The idea behind our first aim is the following series of formal
manipulations:

W2(ξ, u) = e−uξ
∞

∑
n=0

An(ξ)

un
= e−uξ

(
1 +

∞

∑
n=0

An+1(ξ)

un+1

)

= e−uξ

(
1 +

∞

∑
n=0

An+1(ξ)

n!

n!

un+1

)

= e−uξ

(
1 +

∞

∑
n=0

An+1(ξ)

n!

∫ +∞

0
e−uttn dt

)

= e−uξ

(
1 +

∫ +∞

0
e−ut

(
∞

∑
n=0

An+1(ξ)

n!
tn

)
dt

)

= e−uξ

(
1 +

∫ +∞

0
e−utF2(ξ, t)dt

)
.
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Remarks

Kamimoto and Koike studied the case when f (z) is a meromorphic
function with a simple pole at the origin and g(z) ≡ 0. From their
analysis, the connection formula follows in a sufficiently small
neighbourhood of the Stokes curve that emanates from the origin.
The paper has not been published in a peer-reviewed journal yet
but is available online. It relies on the works of Aoki, Kawai and
Takei.

Koike and Schäfke were working on the Borel summability of WKB
solutions on Stokes regions for Schrödinger-type equations with
polynomial or rational potentials. Koike passed away last year and
the paper has not been completed so far. An alternative proof for
polynomial potentials was provided by Takei.

Our analysis could be carried out for the case of a simple turning
point too. Extensions to other types of transition points should also
be feasible.
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Assumptions

Assumptions

Assume that ψ(ξ) is analytic in {ξ : |Imξ| < γ} \ {0} with some
γ > 0, and that there exist positive constants ρ and c such that

∣∣∣∣∣ψ(ξ)−
µ2 − 1

4

ξ2

∣∣∣∣∣ ≤
c

1 + |ξ|1+ρ
,

when ξ ∈ {ξ : |Imξ| < γ} \ {0}.

For any 0 < ε < γ
2 , define the domain Σε of the complex plane via

Σε
def
=

{
t : exp

(
− π

4ε |Ret|
)
< 2 cos

(
π
4εImt

)
, |Imt| < 2ε

}
∪{t : |t| < 2ε}.
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The domain Σε

The domain Σε in the t-plane.
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Borel summability

Theorem (G. N., 2019)

Let 0 < ε <
γ
2 be arbitrary. Under our assumptions, we have, for

any u > 0,

W1(ξ, u) = euξ

(
1 +

∫ +∞

0
e−utF1(ξ, t)dt

)
,

W2(ξ, u) = e−uξ

(
1 +

∫ +∞

0
e−utF2(ξ, t)dt

)
.

If 2ξ /∈ Σε then F1(ξ, t) is analytic in D0,2π(γ− ε)×Σε and if 2ξ ∈ Σε

then F1(ξ, t) has a simple singularity at t = 2ξ. Similarly, if −2ξ /∈
Σε then F2(ξ, t) is analytic in D−π,π(γ − ε) × Σε and if −2ξ ∈ Σε

then F2(ξ, t) has a simple singularity at t = −2ξ. Finally, F2(ξ, t) =
F1(ξeπi, t).

We conjecture that Σε can be replaced by the larger set {t : |Imt| < 2ε}.
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Connection formulae

Proposition (G. N., 2019)

Let ε be an arbitrarily small positive number. Then, under our
assumptions, we have, for any u > 0,

W1(ξ, u) = W1(ξe2πi, u) +
cos(πµ)

2i
W2(ξ, u)

provided ξ ∈ D−π,0 (γ − ε), and

W2(ξ, u) = W2(ξe−2πi, u)− cos(πµ)

2i
W1(ξ, u)

provided ξ ∈ Dπ,2π (γ − ε).
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Stokes phenomena

Corollary (G. N., 2019)

Let ε be an arbitrarily small positive number. Then, under our
assumptions, the following asymptotic expansions hold as u →
+∞:

W1(ξ, u) ∼ euξ
∞

∑
n=0

An(−ξ)

un
+

cos(πµ)

2i
e−uξ

∞

∑
n=0

An(ξ)

un

provided ξ ∈ D−π,0 (γ − ε), and

W2(ξ, u) ∼ e−uξ
∞

∑
n=0

An(ξ)

un
− cos(πµ)

2i
euξ

∞

∑
n=0

An(−ξ)

un

provided ξ ∈ Dπ,2π (γ − ε).
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Example: Associated Legendre equation

For complex ν and µ, the associated Legendre equation takes the
form

(z2 − 1)
d2L(z)

dz2
+ 2z

dL(z)

dz
−

(
ν(ν + 1) +

µ2

z2 − 1

)
L(z) = 0.

Elimination of the first derivative yields

d2w(z, u)

dz2
= (u2 f (z) + g(z))w(z, u),

with u = ν + 1
2 and

f (z) =
1

z2 − 1
, g(z) =

µ2 − 1

4(z2 − 1)2
− 1

4(z2 − 1)
,

w(z, u) =
√

z2 − 1L(z).

We shall focus on the simple pole at z = 1.
14 / 20
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Example: Associated Legendre equation

The corresponding Liouville transformation is

ξ = ξ(z) =
∫ z

1

dt√
t2 − 1

= cosh−1 z.

This is a biholomorphic bijection betweenC\ (−∞, 1] and D− π
2 , π

2
(π).

After this transformation, our equation becomes

d2W(ξ, u)

dξ2
= (u2 + ψ(ξ))W(ξ, u)

with

ψ(ξ) =
µ2 − 1

4

sinh2 ξ
,

W(ξ, u) =
√

sinh ξL(cosh ξ).

Note that ψ(ξ) is analytic in D− π
2 , π

2
(π). We shall focus on the

subdominant solution W2(ξ, u).
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Example: Associated Legendre equation

In this case, it is found that

W2(ξ, u) = e−uξ

(
1 +

∫ +∞

0
e−utF2(ξ, t)dt

)
∼ e−uξ

∞

∑
n=0

An(ξ)

un

with

F2(ξ, t) =
(
µ2 − 1

4

) e−ξ

2 sinh ξ
F
(

3
2 + µ, 3

2 − µ; 2;
e−ξ

2 sinh ξ
(e−t − 1)

)
e−t

and

An(ξ) = (−1)n
n

∑
k=0

S(n, k)

k!

(
1
2 + µ

)
k

(
1
2 − µ

)
k

(
e−ξ

2 sinh ξ

)k

,

where S(n, k) denote the Stirling numbers of the second kind. Note
that the Borel summability holds in D− π

2 , π
2
(π), the theory says only

D− π
2 , π

2
(π − ε). The (simple) singularities are at t = −2ξ + 2πin,

n ∈ Z. Hence, Σε can be enlarged to {t : −2ξ−2πi < Imt <

−2ξ+2πi}.
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Example: Associated Legendre equation

If µ + ν ∈ C \ {−1,−2, . . .}, the standard subdominant solution
is the associated Legendre function of the second kind Q

µ
ν . It is

known that

√
sinh ξQ

µ
ν (cosh ξ) = eπiµ

√
π

2
Γ
(
u + µ + 1

2

)

× e−uξF
(

1
2 + µ, 1

2 − µ; u + 1;
−e−ξ

2 sinh ξ

)
,

whence

√
sinh ξQ

µ
ν (cosh ξ) = eπiµ

√
π

2

Γ
(
u + µ + 1

2

)

Γ(u + 1)
W2(ξ, u).

Further simplification is possible, starting with

log
Γ
(
u + µ + 1

2

)

uµ− 1
2 Γ(u + 1)

=
∫ +∞

0
e−ut

(
µ − 1

2 +
e−(µ− 1

2 )t − 1

et − 1

)
1

t
dt.
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Resurgence in the high-order coefficients

In the general theorem on Borel summability, if |ξ| < min(γ − ε, ε)
and | arg ξ| < π then t = −2ξ is the closest singularity of the Borel
transform F2(ξ, t) to the origin in Σε. Thus, if δ is an arbitrarily
small positive number, Darboux’s theorem tells us that for |ξ| <
γ
2 − δ and | arg ξ| < π, it holds that

An(ξ) ∼
cos(πµ)

π

Γ(n)

(−2ξ)n

(
1 +

(−2ξ)A1(−ξ)

n − 1
+

(−2ξ)2
A2(−ξ)

(n − 1)(n − 2)
+ · · ·

)

as n → +∞. Relations of these type are called resurgence relations
and play an important role in exponential asymptotics. Such
expansions for the coefficients of WKB solutions were first derived
using non-rigorous methods by physicist Dingle.

In the case of our example, t = −2ξ is the closest singularity,
precisely when ξ ∈ D− π

2 , π
2
(π

2 ). Numerical experiments confirm
the asymptotics of the high-order coefficients in this region.
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Future research

We can study the more general equation

d2W(ξ, u)

dξ2
=

(
u2 + uφ(ξ) + ψ(ξ, u)

)
W(ξ, u),

where

ψ(ξ, u) ∼ ψ0(ξ) +
∞

∑
n=1

ψn(ξ)

un

is Borel summable. It is known that the equation has solutions

W±(ξ, u) ∼ exp

(
±uξ ± 1

2

∫ ξ

φ(t)dt

)(
1 +

∞

∑
n=1

A
±
n (ξ)

un

)
,

as u → +∞ and ξ lies in appropriate domains. We could show the
Borel summability of the WKB solutions, but analyticity in the t-
plane followed only near the origin (except when ψ(ξ, u) = ψ0(ξ)).
Connection formulae have not yet been studied.
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Thank you for your attention!
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