# Spectral synthesis on discrete Abelian groups

Miklós Laczkovich Eötvös University, Budapest

AnMath Conference 2019 Aug. 12, 2019 Spectral synthesis is a study of whether functions in a translation invariant closed subspace (a variety) can be synthesized from certain simple functions, mostly exponential polynomials, which are contained in the variety.

Spectral synthesis is a study of whether functions in a translation invariant closed subspace (a variety) can be synthesized from certain simple functions, mostly exponential polynomials, which are contained in the variety.

Let G be a topological group, and let  $C(G) = \{f : G \to \mathbb{C} : f \text{ is continuous}\}$  endowed with the topology of convergence on compact subsets of G.

Spectral synthesis is a study of whether functions in a translation invariant closed subspace (a variety) can be synthesized from certain simple functions, mostly exponential polynomials, which are contained in the variety.

Let G be a topological group, and let  $C(G) = \{f : G \to \mathbb{C} : f \text{ is continuous}\}$  endowed with the topology of convergence on compact subsets of G.

Variety: translation invariant closed subspace of C(G).

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Exponential polynomials are the functions  $\sum_{i=1}^{n} p_i(x) \cdot e^{c_i x}$ , where  $p_i \in \mathbb{C}[x]$  and  $c_i \in \mathbb{C}$  for every i = 1, ..., n.

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Exponential polynomials are the functions  $\sum_{i=1}^{n} p_i(x) \cdot e^{c_i x}$ , where  $p_i \in \mathbb{C}[x]$  and  $c_i \in \mathbb{C}$  for every i = 1, ..., n.

#### Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on  $\mathbb{R}^2$ . Moreover, there is a variety  $0 \neq V \subset C(\mathbb{R}^2)$  not containing any exponential.

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Exponential polynomials are the functions  $\sum_{i=1}^{n} p_i(x) \cdot e^{c_i x}$ , where  $p_i \in \mathbb{C}[x]$  and  $c_i \in \mathbb{C}$  for every i = 1, ..., n.

### Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on  $\mathbb{R}^2$ . Moreover, there is a variety  $0 \neq V \subset C(\mathbb{R}^2)$  not containing any exponential.

Duality:  $\mathcal{M} = \{ \text{Borel measures on } \mathbb{R} \text{ with compact support} \}$  is an algebra under addition and convolution.

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Exponential polynomials are the functions  $\sum_{i=1}^{n} p_i(x) \cdot e^{c_i x}$ , where  $p_i \in \mathbb{C}[x]$  and  $c_i \in \mathbb{C}$  for every i = 1, ..., n.

### Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on  $\mathbb{R}^2$ . Moreover, there is a variety  $0 \neq V \subset C(\mathbb{R}^2)$  not containing any exponential.

Duality:  $\mathcal{M} = \{ \text{Borel measures on } \mathbb{R} \text{ with compact support} \}$  is an algebra under addition and convolution.

If  $V \subset C(\mathbb{R})$  is a variety, then  $V^{\perp} = \{ \mu \in \mathcal{M} \colon f * \mu = 0 \ (f \in V) \}$  is an ideal of  $\mathcal{M}$ ;

Spectral synthesis holds on  $\mathbb{R}$ : every variety  $V \subset C(\mathbb{R})$  is spanned by the exponential polynomials contained in V.

Exponential polynomials are the functions  $\sum_{i=1}^{n} p_i(x) \cdot e^{c_i x}$ , where  $p_i \in \mathbb{C}[x]$  and  $c_i \in \mathbb{C}$  for every i = 1, ..., n.

### Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on  $\mathbb{R}^2$ . Moreover, there is a variety  $0 \neq V \subset C(\mathbb{R}^2)$  not containing any exponential.

Duality:  $\mathcal{M} = \{ \text{Borel measures on } \mathbb{R} \text{ with compact support} \}$  is an algebra under addition and convolution.

If  $V \subset C(\mathbb{R})$  is a variety, then  $V^{\perp} = \{ \mu \in \mathcal{M} \colon f * \mu = 0 \ (f \in V) \}$  is an ideal of  $\mathcal{M}$ :

if  $I \subset \mathcal{M}$  is an ideal then  $I^{\perp} = \{ f \in C(\mathbb{R}) : f * \mu = 0 \ (\mu \in I) \}$  is a variety.

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) : \mu * f = 0 \}$ . Then spectral synthesis holds in V.

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) \colon \mu * f = 0 \}$ . Then spectral synthesis holds in V.

# Theorem (M. Lefranc 1958)

Spectral synthesis holds on  $\mathbb{Z}^n$  (endowed with the discrete topology).

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) : \mu * f = 0 \}$ . Then spectral synthesis holds in V.

## Theorem (M. Lefranc 1958)

Spectral synthesis holds on  $\mathbb{Z}^n$  (endowed with the discrete topology).

 $\mathcal{M} = \{\text{measures with finite support}\}.$ 

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) : \mu * f = 0 \}$ . Then spectral synthesis holds in V.

## Theorem (M. Lefranc 1958)

Spectral synthesis holds on  $\mathbb{Z}^n$  (endowed with the discrete topology).

 $\mathcal{M} = \{\text{measures with finite support}\}.$ 

 $\mathcal{M}$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb{C}[x_1,\ldots,x_n]$ .

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) : \mu * f = 0 \}$ . Then spectral synthesis holds in V.

### Theorem (M. Lefranc 1958)

Spectral synthesis holds on  $\mathbb{Z}^n$  (endowed with the discrete topology).

 $\mathcal{M} = \{\text{measures with finite support}\}.$ 

 $\mathcal{M}$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb{C}[x_1,\ldots,x_n]$ .

Lefranc's theorem follows from

Let  $\mu$  be a measure on  $\mathbb{R}^n$  with compact support, and let  $V = \{ f \in C(\mathbb{R}^n) \colon \mu * f = 0 \}$ . Then spectral synthesis holds in V.

## Theorem (M. Lefranc 1958)

Spectral synthesis holds on  $\mathbb{Z}^n$  (endowed with the discrete topology).

 $\mathcal{M} = \{ \text{measures with finite support} \}.$ 

 $\mathcal{M}$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb{C}[x_1,\ldots,x_n]$ .

Lefranc's theorem follows from

Krull's theorem If J is an ideal of  $\mathbb{C}[x_1,\ldots,x_n]$  and  $f\in\mathbb{C}[x_1,\ldots,x_n]\setminus J$ , then there is a differential operator D s.t.  $Dp(0,\ldots,0)=0$  for every  $p\in J$  and  $Df(0,\ldots,0)\neq 0$ .

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

Exponential polynomials are the functions of the form  $\sum_{i=1}^{n} p_i \cdot m_i$ , where  $m_1, \ldots, m_n$  are exponentials and  $p_1, \ldots, p_n$  are polynomials.

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

Exponential polynomials are the functions of the form  $\sum_{i=1}^{n} p_i \cdot m_i$ , where  $m_1, \ldots, m_n$  are exponentials and  $p_1, \ldots, p_n$  are polynomials.

Polynomial (by Elliott):  $P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are "integer representations of G".

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

Exponential polynomials are the functions of the form  $\sum_{i=1}^{n} p_i \cdot m_i$ , where  $m_1, \ldots, m_n$  are exponentials and  $p_1, \ldots, p_n$  are polynomials.

Polynomial (by Elliott):  $P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are "integer representations of G".

Polynomial (by Gilbert):  $P(a_1, \ldots, a_n)$ , where  $P \in \mathbb{C}[x_1, \ldots, x_n]$ 

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

Exponential polynomials are the functions of the form  $\sum_{i=1}^{n} p_i \cdot m_i$ , where  $m_1, \ldots, m_n$  are exponentials and  $p_1, \ldots, p_n$  are polynomials.

Polynomial (by Elliott):  $P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are "integer representations of G".

Polynomial (by Gilbert):  $P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  belong to a fix a set X of real characters of G (homomorphisms of G into  $\mathbb{R}$ ) separating the points of G.

A function  $m \in C(G)$  is an exponential if  $m \neq 0$  and  $m(x + y) = m(x) \cdot m(y)$   $(x, y \in G)$ .

Exponential polynomials are the functions of the form  $\sum_{i=1}^{n} p_i \cdot m_i$ , where  $m_1, \ldots, m_n$  are exponentials and  $p_1, \ldots, p_n$  are polynomials.

Polynomial (by Elliott):  $P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are "integer representations of G".

Polynomial (by Gilbert):  $P(a_1, \ldots, a_n)$ , where  $P \in \mathbb{C}[x_1, \ldots, x_n]$  and  $a_1, \ldots, a_n$  belong to a fix a set X of real characters of G (homomorphisms of G into  $\mathbb{R}$ ) separating the points of G.

# Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{ f \in C(G) : \mu * f = 0 \}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}.$$

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}.$$

Let X be the set of all coordinate functions  $x_n$ . Then X is a set of real characters of G separating the points of G.

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}.$$

Let X be the set of all coordinate functions  $x_n$ . Then X is a set of real characters of G separating the points of G.

Let  $a: G \to \mathbb{C}$  be the additive function  $a(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} x_i$ .

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}.$$

Let X be the set of all coordinate functions  $x_n$ . Then X is a set of real characters of G separating the points of G.

Let  $a: G \to \mathbb{C}$  be the additive function  $a(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} x_i$ .

Then  $V_a = \{c_1 \cdot a + c_2 \colon c_1, c_2 \in \mathbb{C}\}$  is a variety,

Let G be a locally compact Abelian group, and let  $\mu$  be a measure on G with compact support. Then spectral synthesis holds in  $\mu^{\perp} = \{f \in C(G): \mu * f = 0\}.$ 

Let  $G = F_{\omega}$  be the free Abelian group generated by (countably) infinitely many generators.

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}.$$

Let X be the set of all coordinate functions  $x_n$ . Then X is a set of real characters of G separating the points of G.

Let  $a: G \to \mathbb{C}$  be the additive function  $a(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} x_i$ .

Then  $V_a = \{c_1 \cdot a + c_2 : c_1, c_2 \in \mathbb{C}\}$  is a variety, and every exponential polynomial in  $V_a$  is constant  $(c \cdot 1)$ .

 $V_f$  = the linear hull of the translates of f.

 $V_f$  = the linear hull of the translates of f.

# Theorem (L. Schwartz 1947)

A continuous function  $f \in C(\mathbb{R})$  is an exponential polynomial if and only if  $V_f$  is of finite dimension.

 $V_f$  = the linear hull of the translates of f.

### Theorem (L. Schwartz 1947)

A continuous function  $f \in C(\mathbb{R})$  is an exponential polynomial if and only if  $V_f$  is of finite dimension.

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

 $V_f$  = the linear hull of the translates of f.

# Theorem (L. Schwartz 1947)

A continuous function  $f \in C(\mathbb{R})$  is an exponential polynomial if and only if  $V_f$  is of finite dimension.

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

### Theorem (T. Levi-Civita 1913)

If  $f \in C^{\infty}(\mathbb{R})$  satisfies a Levi-Civita equation, then f is an exponential polynomial.

 $V_f$  = the linear hull of the translates of f.

### Theorem (L. Schwartz 1947)

A continuous function  $f \in C(\mathbb{R})$  is an exponential polynomial if and only if  $V_f$  is of finite dimension.

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

### Theorem (T. Levi-Civita 1913)

If  $f \in C^{\infty}(\mathbb{R})$  satisfies a Levi-Civita equation, then f is an exponential polynomial.

# Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function  $f \in C(\mathbb{R}^p)$  is an exponential polynomial if and only if  $V_f$  is of finite dimension.

For every  $f \in C(G)$ ,  $V_f$  is of finite dimension if and only if f belongs to the algebra generated by the exponentials and the continuous homomorphisms (additive functions) of G into  $\mathbb{C}$ .

For every  $f \in C(G)$ ,  $V_f$  is of finite dimension if and only if f belongs to the algebra generated by the exponentials and the continuous homomorphisms (additive functions) of G into  $\mathbb{C}$ .

 $p \in C(G)$  is a polynomial if  $p = P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are continuous homomorphisms of G into  $\mathbb{C}$ .

For every  $f \in C(G)$ ,  $V_f$  is of finite dimension if and only if f belongs to the algebra generated by the exponentials and the continuous homomorphisms (additive functions) of G into  $\mathbb{C}$ .

 $p \in C(G)$  is a polynomial if  $p = P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are continuous homomorphisms of G into  $\mathbb{C}$ .

Exponential polynomials are the functions of the form  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k$  are polynomials.

For every  $f \in C(G)$ ,  $V_f$  is of finite dimension if and only if f belongs to the algebra generated by the exponentials and the continuous homomorphisms (additive functions) of G into  $\mathbb{C}$ .

 $p \in C(G)$  is a polynomial if  $p = P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are continuous homomorphisms of G into  $\mathbb{C}$ .

Exponential polynomials are the functions of the form  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k$  are polynomials.

# Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.

For every  $f \in C(G)$ ,  $V_f$  is of finite dimension if and only if f belongs to the algebra generated by the exponentials and the continuous homomorphisms (additive functions) of G into  $\mathbb{C}$ .

 $p \in C(G)$  is a polynomial if  $p = P(a_1, \ldots, a_n)$ , where  $P \in \mathbb{C}[x_1, \ldots, x_n]$  and  $a_1, \ldots, a_n$  are continuous homomorphisms of G into  $\mathbb{C}$ .

Exponential polynomials are the functions of the form  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k$  are polynomials.

## Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.

*Proof:* It is true on every finitely generated subgroup of G by Lefranc's theorem, so it is true on G.  $\square$ 

# Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

## Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{Z} \ (i = 1, 2, \ldots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$

# Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \dots) : x_i \in \mathbb{Z} \ (i = 1, 2, \dots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$

$$Q(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \dots))$$

## Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \dots) : x_i \in \mathbb{Z} \ (i = 1, 2, \dots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$

$$Q(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \dots))$$

Q is not a polynomial, as  $\dim V_Q = \infty$ .

#### Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \dots) : x_i \in \mathbb{Z} \ (i = 1, 2, \dots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$

$$Q(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \dots))$$

Q is not a polynomial, as  $\dim V_Q = \infty$ .

Every element of  $V_Q$  is of the form  $c_1 \cdot Q + f + c_2$ , where  $c_1, c_2 \in \mathbb{C}$  and f is additive.

## Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \dots) : x_i \in \mathbb{Z} \ (i = 1, 2, \dots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$
$$Q(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \dots))$$

Q is not a polynomial, as  $\dim V_Q = \infty$ .

Every element of  $V_Q$  is of the form  $c_1 \cdot Q + f + c_2$ , where  $c_1, c_2 \in \mathbb{C}$  and f is additive.

The only exponential contained in  $V_Q$  is the identically 1 function, and the polynomials contained in  $V_Q$  are the functions f+c where f is additive and c is constant.

## Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on  $F_{\omega}$ .

$$F_{\omega} = \{(x_1, x_2, \dots) : x_i \in \mathbb{Z} \ (i = 1, 2, \dots), \ \exists \ i_0, \ x_i = 0 \ (i > i_0)\}$$
$$Q(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \dots))$$

Q is not a polynomial, as  $\dim V_Q = \infty$ .

Every element of  $V_Q$  is of the form  $c_1 \cdot Q + f + c_2$ , where  $c_1, c_2 \in \mathbb{C}$  and f is additive.

The only exponential contained in  $V_Q$  is the identically 1 function, and the polynomials contained in  $V_Q$  are the functions f+c where f is additive and c is constant.

Consequently, Q is not in the closure of polynomials contained in  $V_Q$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $f \in C(G)$  is a generalized polynomial if  $(\exists k \geq 0) \ \Delta_{h_1} \dots \Delta_{h_k} f = 0 \ \forall h_1, \dots, h_k$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

$$f \in C(G)$$
 is a generalized polynomial if  $(\exists k \geq 0) \ \Delta_{h_1} \dots \Delta_{h_k} f = 0$   
 $\forall h_1, \dots, h_k.$   $\deg f = (\text{the smallest such } k) - 1.$ 

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on  $\mathsf{G}.$   $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

 $Q \in \mathsf{GP}$  and  $\deg Q = 2$ , as  $\Delta_h Q$  is additive for every h.

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

 $Q \in \mathsf{GP}$  and  $\deg Q = 2$ , as  $\Delta_h Q$  is additive for every h.

 $f \in \mathsf{GEP}$  (generalized exponential polynomials) if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k \in \mathsf{GP}$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

 $Q \in \mathsf{GP}$  and  $\deg Q = 2$ , as  $\Delta_h Q$  is additive for every h.

 $f \in \mathsf{GEP}$  (generalized exponential polynomials) if  $f = \sum_{i=1}^k p_i \cdot m_i$ ,

where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k \in \mathsf{GP}$ .

 $V_{\mathcal{O}} \subset \mathsf{GP} \subset \mathsf{GEP}$ .

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

GP = set of generalized polynomials on G. GP is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

 $Q \in \mathsf{GP}$  and  $\deg Q = 2$ , as  $\Delta_h Q$  is additive for every h.

 $f \in \mathsf{GEP}$  (generalized exponential polynomials) if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k \in \mathsf{GP}$ .

 $V_Q \subset \mathsf{GP} \subset \mathsf{GEP}$ .

Is it true that if G is a discrete Abelian group and V is a variety of C(G) then  $V \cap GEP$  is dense in V?

$$\Delta_h f(x) = f(x+h) - f(x)$$
  $(f: G \to \mathbb{C}, x, h \in G)$ 

 $\mathsf{GP} = \mathsf{set}$  of generalized polynomials on G.  $\mathsf{GP}$  is an algebra.

If f is additive then  $\Delta_h f$  is constant and  $\Delta_{h_1} \Delta_{h_2} f = 0$ . Thus  $f \in \mathsf{GP}$  and  $\deg f = 1$ . Every polynomial is in  $\mathsf{GP}$ .

 $Q \in \mathsf{GP}$  and  $\deg Q = 2$ , as  $\Delta_h Q$  is additive for every h.

 $f \in \mathsf{GEP}$  (generalized exponential polynomials) if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are exponentials and  $p_1, \ldots, p_k \in \mathsf{GP}$ .

 $V_Q \subset \mathsf{GP} \subset \mathsf{GEP}$ .

Is it true that if G is a discrete Abelian group and V is a variety of C(G) then  $V \cap GEP$  is dense in V? (Generalized spectral synthesis)

 $f \in \mathrm{EP}$  if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in \mathrm{P}$   $(i=1,\ldots,k)$ .

 $f \in \mathrm{EP}$  if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in \mathrm{P}$   $(i=1,\ldots,k)$ . (Definition)

$$f \in \mathrm{EP}$$
 if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in \mathrm{P}$   $(i=1,\ldots,k)$ . (Definition)

 $f \in \mathrm{EP} \iff f \in C(G)$  and  $V_f$  is of finite dimension.

$$f \in \mathrm{EP}$$
 if  $f = \sum_{i=1}^k p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in \mathrm{P}$   $(i=1,\ldots,k)$ . (Definition)

 $f \in \mathrm{EP} \iff f \in C(G)$  and  $V_f$  is of finite dimension. (Good characterization by "inner properties" of f)

$$f \in EP$$
 if  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in P$   $(i = 1, ..., k)$ . (Definition)

 $f \in \mathrm{EP} \iff f \in C(G)$  and  $V_f$  is of finite dimension. (Good characterization by "inner properties" of f)

$$f \in \mathrm{GP} \iff f \in \mathcal{C}(G) \text{ and } (\exists k) (\forall h_1, \ldots, h_k) \Delta_{h_1} \ldots \Delta_{h_k} f = 0.$$

$$f \in EP$$
 if  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_i$  is an exponential and  $p_i \in P$   $(i = 1, ..., k)$ . (Definition)

 $f \in \mathrm{EP} \iff f \in C(G)$  and  $V_f$  is of finite dimension. (Good characterization by "inner properties" of f)

$$f \in GP \iff f \in C(G) \text{ and } (\exists k) (\forall h_1, \dots, h_k) \Delta_{h_1} \dots \Delta_{h_k} f = 0.$$
 (Definition and good characterization)

 $f \in P$  if  $f = P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are continuous homomorphisms.

 $f \in P$  if  $f = P(a_1, ..., a_n)$ , where  $P \in \mathbb{C}[x_1, ..., x_n]$  and  $a_1, ..., a_n$  are continuous homomorphisms. (Definition)

 $f\in \mathrm{P}$  if  $f=P(a_1,\ldots,a_n)$ , where  $P\in \mathbb{C}[x_1,\ldots,x_n]$  and  $a_1,\ldots,a_n$  are continuous homomorphisms. (Definition)

 $f \in P \iff f \in GP \text{ and } f \in EP.$ 

 $f\in \mathrm{P}$  if  $f=P(a_1,\ldots,a_n)$ , where  $P\in \mathbb{C}[x_1,\ldots,x_n]$  and  $a_1,\ldots,a_n$  are continuous homomorphisms. (Definition)

 $f \in P \iff f \in GP \text{ and } f \in EP.$  (Good characterization)

 $f \in P \iff f \in GP \text{ and } f \in EP.$  (Good characterization)  $Proof: P \subset GP \cap EP$  is clear.

 $f \in P \iff f \in GP \text{ and } f \in EP. \text{ (Good characterization)}$ 

*Proof:*  $P \subset GP \cap EP$  is clear.

Fact: If  $f \in \text{GEP}$  then the representation  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are distinct exponentials and  $p_1, \ldots, p_k \in \text{GP} \setminus \{0\}$  is unique.

 $f \in P \iff f \in GP \text{ and } f \in EP.$  (Good characterization)

*Proof:*  $P \subset GP \cap EP$  is clear.

Fact: If  $f \in \text{GEP}$  then the representation  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are distinct exponentials and  $p_1, \ldots, p_k \in \text{GP} \setminus \{0\}$  is unique.

If  $f \in \mathrm{GP} \cap \mathrm{EP}$  then  $f \cdot 1 = \sum_{i=1}^k p_i \cdot m_i \quad (p_1, \dots, p_k \in \mathrm{P})$ .

$$f \in P \iff f \in GP \text{ and } f \in EP.$$
 (Good characterization)

*Proof:*  $P \subset GP \cap EP$  is clear.

Fact: If  $f \in \text{GEP}$  then the representation  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are distinct exponentials and  $p_1, \ldots, p_k \in \text{GP} \setminus \{0\}$  is unique.

If 
$$f \in \mathrm{GP} \cap \mathrm{EP}$$
 then  $f \cdot 1 = \sum_{i=1}^k p_i \cdot m_i \quad (p_1, \dots, p_k \in \mathrm{P})$ .

$$k = 1, \ f = p_1 \in P.$$

$$f \in P \iff f \in GP \text{ and } f \in EP. \text{ (Good characterization)}$$

*Proof:*  $P \subset GP \cap EP$  is clear.

Fact: If  $f \in \text{GEP}$  then the representation  $f = \sum_{i=1}^{k} p_i \cdot m_i$ , where  $m_1, \ldots, m_k$  are distinct exponentials and  $p_1, \ldots, p_k \in \text{GP} \setminus \{0\}$  is unique.

If 
$$f \in GP \cap EP$$
 then  $f \cdot 1 = \sum_{i=1}^k p_i \cdot m_i \quad (p_1, \dots, p_k \in P)$ .

$$k = 1, \ f = p_1 \in P$$
. Thus  $GP \cap EP \subset P$ .

 $f(x + y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$  (Levi-Civita equation)

 $f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$  (Levi-Civita equation)

 $X \neq \emptyset$ .  $F: X^n \to \mathbb{C}$  is decomposable if  $F = \sum_{i=1}^k u_i \cdot v_i$ , where  $u_i, v_i \colon X^n \to \mathbb{C}$   $(i = 1, \dots, k)$ , and  $u_i$  only depends on the variables belonging to a set  $\emptyset \neq E_i \subsetneq \{x_1, \dots, x_n\}$ , and  $v_i$  only depends on the variables belonging to  $\{x_1, \dots, x_n\} \setminus E_i$   $(i = 1, \dots, k)$ .

 $f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$  (Levi-Civita equation)

 $X \neq \emptyset$ .  $F: X^n \to \mathbb{C}$  is decomposable if  $F = \sum_{i=1}^k u_i \cdot v_i$ , where  $u_i, v_i : X^n \to \mathbb{C}$  (i = 1, ..., k), and  $u_i$  only depends on the variables belonging to a set  $\emptyset \neq E_i \subseteq \{x_1, \dots, x_n\}$ , and  $v_i$  only depends on the variables belonging to  $\{x_1,\ldots,x_n\}\setminus E_i$   $(i=1,\ldots,k)$ .

 $u_1(x) \cdot v_1(y,z) + u_2(y) \cdot v_2(x,z) + u_3(z) \cdot v_3(x,y)$ 

is decomposable.

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

$$u_1(x) \cdot v_1(y,z) + u_2(y) \cdot v_2(x,z) + u_3(z) \cdot v_3(x,y)$$

is decomposable.

Fact For every  $f \in C(G)$ ,  $f(x_1 + x_2)$  is decomposable  $\iff$  f satisfies a Levi-Civita equation  $\iff$   $\dim V_f < \infty \iff f \in \mathrm{EP}$ .

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

$$u_1(x) \cdot v_1(y,z) + u_2(y) \cdot v_2(x,z) + u_3(z) \cdot v_3(x,y)$$

is decomposable.

Fact For every 
$$f \in C(G)$$
,  $f(x_1 + x_2)$  is decomposable  $\iff$   $f$  satisfies a Levi-Civita equation  $\iff$   $\dim V_f < \infty \iff f \in \mathrm{EP}$ .

Let G be a topological semigroup with unit.

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

$$u_1(x) \cdot v_1(y, z) + u_2(y) \cdot v_2(x, z) + u_3(z) \cdot v_3(x, y)$$
 is decomposable.

Fact For every  $f \in C(G)$ ,  $f(x_1 + x_2)$  is decomposable  $\iff$  f satisfies a Levi-Civita equation  $\iff$   $\dim V_f < \infty \iff f \in \mathrm{EP}$ .

Let G be a topological semigroup with unit.

 $f \in C(G)$  is a matrix function if f is contained in a finite dimensional translation invariant subspace of C(G).

$$f(x+y) = \sum_{i=1}^{k} g_i(x) \cdot h_i(y)$$
 (Levi-Civita equation)

$$u_1(x) \cdot v_1(y, z) + u_2(y) \cdot v_2(x, z) + u_3(z) \cdot v_3(x, y)$$
 is decomposable.

Fact For every  $f \in C(G)$ ,  $f(x_1 + x_2)$  is decomposable  $\iff$  f satisfies a Levi-Civita equation  $\iff$   $\dim V_f < \infty \iff f \in EP$ .

Let G be a topological semigroup with unit.

 $f \in C(G)$  is a matrix function if f is contained in a finite dimensional translation invariant subspace of C(G).

f is an almost matrix function if, for every finite  $E \subset G$ , there is a finite dimensional subspace of C(G) invariant under the subsemigroup generated by E and containing f.

If  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is an almost matrix function.

If  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is an almost matrix function.

# Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated subsemigroups, then, whenever  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is a matrix function.

If  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is an almost matrix function.

# Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated subsemigroups, then, whenever  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is a matrix function.

## Theorem (K. Shulman 2010)

If  $f \in C(\mathbb{R}^p)$  is such that  $f(x_1 + \ldots + x_n)$  is decomposable for some n > 1, then f is an exponential polynomial.

If  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is an almost matrix function.

# Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated subsemigroups, then, whenever  $f \in C(G)$  is such that  $f(x_1 \cdots x_n)$  is decomposable for some n > 1, then f is a matrix function.

# Theorem (K. Shulman 2010)

If  $f \in C(\mathbb{R}^p)$  is such that  $f(x_1 + \ldots + x_n)$  is decomposable for some n > 1, then f is an exponential polynomial.

## Corollary

For every  $f \in C(\mathbb{R}^p)$ , if  $f(x_1 + \ldots + x_n)$  is decomposable for some n > 1, then  $f(x_1 + \ldots + x_n)$  is decomposable for every n > 1.

Let G be a commutative semigroup with unit. For every  $f \in C(G)$  the following are equivalent.

- (i) There is an  $n \ge 2$  such that  $f(x_1 + \ldots + x_n)$  is decomposable.
- (ii) f is a generalized exponential polynomial.

Let G be a commutative semigroup with unit. For every  $f \in C(G)$  the following are equivalent.

- (i) There is an  $n \ge 2$  such that  $f(x_1 + \ldots + x_n)$  is decomposable.
- (ii) f is a generalized exponential polynomial.

Note This is not a "good" characterization of GEP.

Let G be a commutative semigroup with unit. For every  $f \in C(G)$  the following are equivalent.

- (i) There is an  $n \ge 2$  such that  $f(x_1 + \ldots + x_n)$  is decomposable.
- (ii) f is a generalized exponential polynomial.

Note This is not a "good" characterization of GEP.

 $Q(x_1 + x_2 + x_3)$  is decomposable, but  $Q(x_1 + x_2)$  is not.

Let G be a commutative semigroup with unit. For every  $f \in C(G)$  the following are equivalent.

- (i) There is an  $n \ge 2$  such that  $f(x_1 + \ldots + x_n)$  is decomposable.
- (ii) f is a generalized exponential polynomial.

Note This is not a "good" characterization of GEP.

 $Q(x_1 + x_2 + x_3)$  is decomposable, but  $Q(x_1 + x_2)$  is not. That is,

Let G be a commutative semigroup with unit. For every  $f \in C(G)$  the following are equivalent.

- (i) There is an  $n \ge 2$  such that  $f(x_1 + \ldots + x_n)$  is decomposable.
- (ii) f is a generalized exponential polynomial.

Note This is not a "good" characterization of GEP.

 $Q(x_1 + x_2 + x_3)$  is decomposable, but  $Q(x_1 + x_2)$  is not. That is,

#### Corollary

 $\exists f \in C(F_{\omega}) \text{ s.t. } f(x_1 + \ldots + x_n) \text{ is decomposable for some } n, \text{ but } f(x_1 + x_2) \text{ is not decomposable.}$ 

Spectral analysis holds on G if every variety  $0 \neq V \subset G$  contains an exponential.

Spectral analysis holds on G if every variety  $0 \neq V \subset G$  contains an exponential.

Gurevich Spectral analysis does not hold on  $\mathbb{R}^2$ .

Spectral analysis holds on G if every variety  $0 \neq V \subset G$  contains an exponential.

Gurevich Spectral analysis does not hold on  $\mathbb{R}^2$ .

 $r_0(G)$  is the cardinality of a maximal independent system of elements of infinite order.

Spectral analysis holds on G if every variety  $0 \neq V \subset G$  contains an exponential.

Gurevich Spectral analysis does not hold on  $\mathbb{R}^2$ .

 $r_0(G)$  is the cardinality of a maximal independent system of elements of infinite order.

# Theorem (ML, G. Székelyhidi 2005)

Spectral analysis holds on a discrete Abelian group G if and only if  $r_0(G) < 2^{\aleph_0}$ .

Spectral analysis holds on G if every variety  $0 \neq V \subset G$  contains an exponential.

Gurevich Spectral analysis does not hold on  $\mathbb{R}^2$ .

 $r_0(G)$  is the cardinality of a maximal independent system of elements of infinite order.

# Theorem (ML, G. Székelyhidi 2005)

Spectral analysis holds on a discrete Abelian group G if and only if  $r_0(G) < 2^{\aleph_0}$ .

## Corollary

Generalized spectral synthesis fails on G if  $r_0(G) \ge 2^{\aleph_0}$ . In particular, it fails on  $\mathbb{R}$  (as a discrete group).

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P.

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P. Then  $V \cap \mathsf{GEP}$  is not dense in V.

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P. Then  $V \cap \mathsf{GEP}$  is not dense in V.

# Theorem (ML, L. Székelyhidi 2007)

Spectral synthesis holds on a discrete Abelian group G if and only if  $r_0(G) < \aleph_0$ .

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P. Then  $V \cap \mathsf{GEP}$  is not dense in V.

# Theorem (ML, L. Székelyhidi 2007)

Spectral synthesis holds on a discrete Abelian group G if and only if  $r_0(G) < \aleph_0$ .

#### **Theorem**

Spectral synthesis holds on  $G \iff$  generalized spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$ .

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P. Then  $V \cap \mathsf{GEP}$  is not dense in V.

## Theorem (ML, L. Székelyhidi 2007)

Spectral synthesis holds on a discrete Abelian group G if and only if  $r_0(G) < \aleph_0$ .

#### **Theorem**

Spectral synthesis holds on  $G \iff$  generalized spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$ .

 $f \in C(G)$  is a local polynomial if, for every finitely generated subgroup  $H \subset G$ , the restriction  $f|_H$  is a polynomial on H. (LP)

Generalized spectral synthesis fails already on  $F_{\omega}$ .

Let  $P(x) = \sum_{k=1}^{\infty} x_k^k$ , and let V be the variety generated by P. Then  $V \cap \mathsf{GEP}$  is not dense in V.

## Theorem (ML, L. Székelyhidi 2007)

Spectral synthesis holds on a discrete Abelian group G if and only if  $r_0(G) < \aleph_0$ .

#### **Theorem**

Spectral synthesis holds on  $G \iff$  generalized spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$ .

 $f \in C(G)$  is a local polynomial if, for every finitely generated subgroup  $H \subset G$ , the restriction  $f|_H$  is a polynomial on H. (LP)

$$\mathsf{P}\subset\mathsf{GP}\subset\mathsf{LP}$$

Local spectral synthesis holds on  $F_{\omega}$ .

Local spectral synthesis holds on  $F_{\omega}$ .

 $\mathcal{M} = \{ \text{measures on } F_{\omega} \text{ with finite support} \}.$ 

Local spectral synthesis holds on  $F_{\omega}$ .

 $\mathcal{M} = \{ \text{measures on } F_{\omega} \text{ with finite support} \}.$ 

 $\mathcal{M}$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb{C}[x_1,x_2,\ldots]$ .

Local spectral synthesis holds on  $F_{\omega}$ .

 $\mathcal{M} = \{ \text{measures on } F_{\omega} \text{ with finite support} \}.$ 

 $\mathcal M$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb C[x_1,x_2,\ldots]$ .

#### Theorem (ML 2014)

If J is an ideal of  $\mathbb{C}[x_1, x_2, \ldots]$  and  $f \in \mathbb{C}[x_1, x_2, \ldots] \setminus J$ , then there is a differential operator D and there is a vector  $(c_1, c_2, \ldots)$  s.t.  $Dp(c_1, c_2, \ldots) = 0$  for every  $p \in J$  and  $Df(c_1, c_2, \ldots) \neq 0$ .

Local spectral synthesis holds on  $F_{\omega}$ .

 $\mathcal{M} = \{ \text{measures on } F_{\omega} \text{ with finite support} \}.$ 

 $\mathcal M$  is (more or less) isomorphic to the algebra of differential operators on  $\mathbb C[x_1,x_2,\ldots]$ .

#### Theorem (ML 2014)

If J is an ideal of  $\mathbb{C}[x_1,x_2,\ldots]$  and  $f\in\mathbb{C}[x_1,x_2,\ldots]\setminus J$ , then there is a differential operator D and there is a vector  $(c_1,c_2,\ldots)$  s.t.  $Dp(c_1,c_2,\ldots)=0$  for every  $p\in J$  and  $Df(c_1,c_2,\ldots)\neq 0$ .

Let 
$$J = \langle x_1^2, x_1 - x_2, x_1 - x_3, \ldots \rangle$$
. Then  $x_1 \notin J$ . Then  $c = (0, 0, \ldots)$  and  $D = \sum_{k=1}^{\infty} \frac{\partial}{\partial x_k}$  do.

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$ 

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$  generalized spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$ 

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$  generalized spectral synthesis holds on  $G \iff r_0(G) < \aleph_0$  local spectral synthesis holds on  $G \iff r_0(G) < \kappa$ 

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

$$\kappa = ?$$

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

$$\kappa = ?$$
 (CH) $\Longrightarrow \kappa = \aleph_1$ .

There exists a cardinal  $\aleph_1 \leq \kappa \leq 2^{\aleph_0}$  s.t. for every discrete Abelian group G, local spectral synthesis holds on G if and only if  $r_0(G) < \kappa$ .

$$\kappa = ?$$
 (CH) $\Longrightarrow \kappa = \aleph_1$ . Is  $\kappa > \aleph_1$  consistent with ZFC?

Local spectral synthesis on  $F_{\omega}$  is based on: If J is an ideal of  $\mathbb{C}[x_1,x_2,\ldots]$  and  $f\in\mathbb{C}[x_1,x_2,\ldots]\setminus J$ , then there is a differential operator D and there is a vector  $(c_1,c_2,\ldots)$  s.t.  $Dp(c_1,c_2,\ldots)=0$  for every  $p\in J$  and  $Df(c_1,c_2,\ldots)\neq 0$ .

Local spectral synthesis on  $F_{\omega}$  is based on: If J is an ideal of  $\mathbb{C}[x_1,x_2,\ldots]$  and  $f\in\mathbb{C}[x_1,x_2,\ldots]\setminus J$ , then there is a differential operator D and there is a vector  $(c_1,c_2,\ldots)$  s.t.  $Dp(c_1,c_2,\ldots)=0$  for every  $p\in J$  and  $Df(c_1,c_2,\ldots)\neq 0$ .

#### Theorem (P. Komjáth, ML 2014)

It is consistent with ZFC that  $\aleph_1 < 2^{\aleph_0}$ , and the analogous statement is false in  $\mathbb{C}[X]$ , if  $|X| = \aleph_1$ .

Local spectral synthesis on  $F_{\omega}$  is based on: If J is an ideal of  $\mathbb{C}[x_1,x_2,\ldots]$  and  $f\in\mathbb{C}[x_1,x_2,\ldots]\setminus J$ , then there is a differential operator D and there is a vector  $(c_1,c_2,\ldots)$  s.t.  $Dp(c_1,c_2,\ldots)=0$  for every  $p\in J$  and  $Df(c_1,c_2,\ldots)\neq 0$ .

### Theorem (P. Komjáth, ML 2014)

It is consistent with ZFC that  $\aleph_1 < 2^{\aleph_0}$ , and the analogous statement is false in  $\mathbb{C}[X]$ , if  $|X| = \aleph_1$ .

#### Conjecture

 $\kappa = \aleph_1$ , independently of the value of the continuum.

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

# Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

## Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

#### Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 
$$0, a, b, a + b$$
 be the vertices of  $P$ .  
 $f(x) + f(x + ay) + f(x + by) + f(x + (a + b)y) = 0$  (\*)  
 $(x, y \in \mathbb{C}, |y| = 1)$ 

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

### Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.  

$$f(x) + f(x + ay) + f(x + by) + f(x + (a + b)y) = 0$$
 (\*)

$$(x, y \in \mathbb{C}, |y| = 1)$$

Let  $F \subset \mathbb{C}$  be finite, and let G be the additive subgroup of  $\mathbb{C}$  generated by F. The set V of functions  $f: G \to \mathbb{C}$  s.t. (\*) holds for every  $x \in G$ ,  $y \in F$ , |y| = 1 is a variety.

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

### Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.

$$f(x) + f(x + ay) + f(x + by) + f(x + (a + b)y) = 0$$
 (\*)  
(x, y \in \mathbb{C}, |y| = 1)

Let  $F \subset \mathbb{C}$  be finite, and let G be the additive subgroup of  $\mathbb{C}$  generated by F. The set V of functions  $f: G \to \mathbb{C}$  s.t. (\*) holds for every  $x \in G$ ,  $y \in F$ , |y| = 1 is a variety. G is finitely generated and torsion free, so isomorphic to  $\mathbb{Z}^n$  for some n.

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

### Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P. f(x) + f(x + ay) + f(x + by) + f(x + (a + b)y) = 0 (\*)  $(x, y \in \mathbb{C}, |y| = 1)$ 

Let  $F \subset \mathbb{C}$  be finite, and let G be the additive subgroup of  $\mathbb{C}$  generated by F. The set V of functions  $f:G \to \mathbb{C}$  s.t. (\*) holds for every  $x \in G$ ,  $y \in F$ , |y|=1 is a variety. G is finitely generated and torsion free, so isomorphic to  $\mathbb{Z}^n$  for some n. By Lefranc' theorem, V contains an exponential. So we may assume that f is an exponential: f(x+y)=f(x)f(y),

If  $f: \mathbb{R}^2 \to \mathbb{C}$  is such that the sum of the values of f at the vertices of any unit square is zero, then  $f \equiv 0$ .

### Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.

$$f(x)+f(x+ay)+f(x+by)+f(x+(a+b)y)=0$$
 (\*)  $(x,y\in\mathbb{C},\ |y|=1)$  Let  $F\subset\mathbb{C}$  be finite, and let  $G$  be the additive subgroup of  $\mathbb{C}$  generated by  $F$ . The set  $V$  of functions  $f\colon G\to\mathbb{C}$  s.t. (\*) holds for every  $x\in G,\ y\in F,\ |y|=1$  is a variety.  $G$  is finitely generated and torsion free, so isomorphic to  $\mathbb{Z}^n$  for some  $n$ . By Lefranc' theorem,  $V$  contains an exponential. So we may assume that  $f$  is an exponential:  $f(x+y)=f(x)f(y),$   $1+f(ay)+f(by)+f(ay)f(by)=(a+f(ay)(1+f(by))=0$   $(|y|=1).$ 

