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by the exponential polynomials contained in V.

Exponential polynomials are the functions Y7, pi(x) - e5%, where
pi € C[x] and ¢; € C for every i =1,...,n.

Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on R?. Moreover, there is a
variety 0 # V C C(R?) not containing any exponential.

Duality: M = {Borel measures on R with compact support} is an
algebra under addition and convolution.

If V. C C(R) is a variety, then V- = {ue M: fxpu=0(f € V)}
is an ideal of M;

if | C M is an ideal then I = {f € C(R): f+u=0(necl)}isa
variety.
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Theorem (Ehrenpreis, Malgrange 1955)

Let ;v be a measure on R™ with compact support, and let
V ={f € C(R"): uxf =0}. Then spectral synthesis holds in V.

v

Theorem (M. Lefranc 1958)

Spectral synthesis holds on Z" (endowed with the discrete
topology).

M = {measures with finite support}.

M is (more or less) isomorphic to the algebra of differential
operators on C[xy, ..., xp].

Lefranc’s theorem follows from

Krull's theorem If J is an ideal of C[xq, ..., x,| and
f € C[x1,...,xn] \ J, then there is a differential operator D s.t.
Dp(0, ... 0)—0foreveryp€Jande( ,0) # 0.



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and
m(x +y) = m(x)-m(y) (x,y € G).



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and

m(x +y) =m(x)-m(y) (x,y € G).

Exponential polynomials are the functions of the form Y7, p; - mj,
where my, ..., m, are exponentials and p1,..., p, are polynomials.



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and
m(x +y) = m(x) - m(y) (x,y € G).
Exponential polynomials are the functions of the form Y7, p; - mj,

where my, ..., m, are exponentials and pi, ..., p, are polynomials.

Polynomial (by Elliott): P(a1,...,an), where P € C[xy, ..., Xs]

and ai, ..., a, are “integer representations of G".



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and
m(x +y) = m(x)-m(y) (x,y € G).

Exponential polynomials are the functions of the form Y7, p; - mj,
where my, ..., m, are exponentials and pi, ..., p, are polynomials.

Polynomial (by Elliott): P(a1,...,an), where P € C[xy, ..., Xs]

and ai, ..., a, are “integer representations of G".

Polynomial (by Gilbert): P(a1,...,an), where P € C[x1,. .., xp]



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and
m(x +y) = m(x)-m(y) (x,y € G).

Exponential polynomials are the functions of the form Y7, p; - mj,
where my, ..., m, are exponentials and pi, ..., p, are polynomials.
Polynomial (by Elliott): P(a1,...,an), where P € C[xy, ..., Xs]

and ai, ..., a, are “integer representations of G".

Polynomial (by Gilbert): P(a1,...,an), where P € C[x1,. .., xp]
and ai, ..., a, belong to a fix a set X of real characters of G
(homomorphisms of G into R) separating the points of G.



Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966]."

A function m € C(G) is an exponential if m # 0 and
m(x +y) = m(x) - m(y) (x,y € G).
Exponential polynomials are the functions of the form Y7, p; - mj,

where my, ..., m, are exponentials and pi, ..., p, are polynomials.

Polynomial (by Elliott): P(a1,...,an), where P € C[xy, ..., Xs]

and ai, ..., a, are “integer representations of G".

Polynomial (by Gilbert): P(a1,...,an), where P € C[x1,. .., xp]
and ai, ..., a, belong to a fix a set X of real characters of G
(homomorphisms of G into R) separating the points of G.

Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.




Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.




Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.



Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.

Fw:{(Xl,XQ,...)ZX;EZ(/Z]_,2,...), =R XiZO(i>i0)}.



Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.

Fw:{(Xl,Xz,...)ZX;EZ(/Z]_,2,...), =R X;ZO(i>i0)}.

Let X be the set of all coordinate functions x,. Then X is a set of
real characters of G separating the points of G.



Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.

Fw:{(Xl,Xz,...)ZX;EZ(/Z]_,2,...), =R X;ZO(i>i0)}.

Let X be the set of all coordinate functions x,. Then X is a set of
real characters of G separating the points of G.
Let a: G — C be the additive function a(xi, x2,...) = > 721 Xi.



Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.

Fw:{(Xl,Xz,...)ZX;EZ(/Z]_,2,...), =R X;ZO(i>i0)}.

Let X be the set of all coordinate functions x,. Then X is a set of
real characters of G separating the points of G.
Let a: G — C be the additive function a(xi, x2,...) = > 721 Xi.

Then Vo ={ca-a+ c: c,c € C} is a variety,



Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let . be a measure
on G with compact support. Then spectral synthesis holds in
pt={f € C(G): uxf=0}.

Let G = F,, be the free Abelian group generated by (countably)
infinitely many generators.

Fw:{(Xl,Xz,...)ZX;EZ(/Z]_,2,...), =R X;ZO(i>i0)}.

Let X be the set of all coordinate functions x,. Then X is a set of
real characters of G separating the points of G.
Let a: G — C be the additive function a(xi, x2,...) = > 721 Xi.

Then Vo ={ca-a+ c: c1,c € C} is a variety, and every
exponential polynomial in V; is constant (c - 1).
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Theorem (T. Levi-Civita 1913)

If f € C>*(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f € C(RP) is an exponential polynomial if
and only if Vs is of finite dimension.
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J.J. Stone 1960, M.A. McKiernan 1977 and others: Let G be an
Abelian topological semigroup with unit.

For every f € C(G), Vf is of finite dimension if and only if f
belongs to the algebra generated by the exponentials and the
continuous homomorphisms (additive functions) of G into C.

p € C(G) is a polynomial if p= P(a1,...,an), where

P € C[x1,...,xp] and a1,. .., a, are continuous homomorphisms of
G into C.

Exponential polynomials are the functions of the form

f= Z/I'(:l pi - mj, where my, ..., my are exponentials and

p1,- .., Pk are polynomials.

Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.

Proof: It is true on every finitely generated subgroup of G by
Lefranc’s theorem, so it is true on G. [J
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Theorem (L. Székelyhidi 2004)
Spectral synthesis does not hold on F,.

Fw:{(X17X27---) X €z (I:1,2,), 3 I'0, X,':O (/> /0)}
Q) =221 (x=(x1,%,...))
Q is not a polynomial, as dim Vg = ooc.

Every element of V( is of the form ¢; - Q + f + 2, where
c1,¢ € C and f is additive.

The only exponential contained in V(g is the identically 1 function,
and the polynomials contained in V( are the functions f + ¢ where
f is additive and c is constant.

Consequently, @ is not in the closure of polynomials contained in
V.
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f € C(G) is a generalized polynomial if (3k > 0) Ay, ... Ap f =0
Vhi,..., hg. deg f = (the smallest such k) — 1.

GP = set of generalized polynomials on G. GP is an algebra.

If f is additive then Apf is constant and Ap Ap,f = 0. Thus
f € GP and deg f = 1. Every polynomial is in GP.

Q € GP and deg Q = 2, as A,Q is additive for every h.

f € GEP (generalized exponential polynomials) if f = Zf-;l pi - m;,
where my, ..., my are exponentials and py, ..., px € GP.

Vo € GP C GEP.
Is it true that if G is a discrete Abelian group and V is a variety of

C(G) then V N GEP is dense in V' 7 (Generalized spectral
synthesis)
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feEPIff = Zf'(:l pi - m;, where m; is an exponential and p; € P
(i=1,..., k). (Definition)

f € EP < f € C(G) and Vs is of finite dimension. (Good
characterization by “inner properties” of f)

f eGP <= fe C(G)and (3k) (Vhi, ..., he) Dp, ... Ap f =0,
(Definition and good characterization)
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are continuous homomorphisms. (Definition)

feP < f eGP and f € EP. (Good characterization)

Proof: P C GP NEP is clear.

Fact: If f € GEP then the representation f = Zf-;l pi - mj, where
my, ..., my are distinct exponentials and pi,...,px € GP\ {0} is
unique.

If f € GPNEP then f~1:2ff:1p,-~m,- (p1,--.,pk €P).
k=1, f=p; € P. Thus GPNEP C P. 0
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X #£0. F: X" — C is decomposable if F = Zf-;l u; - v;, where
ui,vi: X" —= C (i=1,...,k), and u; only depends on the variables
belonging to a set () # E; C {x1,...,X,}, and v; only depends on
the variables belonging to {x1,...,xp} \ Ei (i =1,..., k).

u1(x) - a(y,2) + a(y) - va(x,2) + us(2) - va(x, )

is decomposable.

Fact For every f € C(G),

f(x1 + x2) is decomposable <= f satisfies a Levi-Civita
equation <= dimV; <o <= f € EP.

Let G be a topological semigroup with unit.

f € C(G) is a matrix function if f is contained in a finite
dimensional translation invariant subspace of C(G).

f is an almost matrix function if, for every finite E C G, there is a
finite dimensional subspace of C(G) invariant under the
subsemigroup generated by E and containing f.



Theorem (K. Shulman 2010)

If f € C(G) is such that f(x1---x,) is decomposable for some
n > 1, then f is an almost matrix function.




Theorem (K. Shulman 2010)

If f € C(G) is such that f(x1---x,) is decomposable for some
n > 1, then f is an almost matrix function.

Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated
subsemigroups, then, whenever f € C(G) is such that f(xi ---xp)
is decomposable for some n > 1, then f is a matrix function.




Theorem (K. Shulman 2010)

If f € C(G) is such that f(x1---x,) is decomposable for some
n > 1, then f is an almost matrix function.

Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated
subsemigroups, then, whenever f € C(G) is such that f(xi ---xp)
is decomposable for some n > 1, then f is a matrix function.

Theorem (K. Shulman 2010)

If f € C(RP) is such that f(x1 + ...+ xn) is decomposable for
some n > 1, then f is an exponential polynomial.




Theorem (K. Shulman 2010)

If f € C(G) is such that f(x1---x,) is decomposable for some
n > 1, then f is an almost matrix function.

Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated
subsemigroups, then, whenever f € C(G) is such that f(xi ---xp)
is decomposable for some n > 1, then f is a matrix function.

Theorem (K. Shulman 2010)

If f € C(RP) is such that f(xy + ...+ xp) is decomposable for
some n > 1, then f is an exponential polynomial.

Corollary

For every f € C(RP), if f(x1 + ...+ xp) is decomposable for some
n>1, then f(x1 + ...+ x,) is decomposable for every n > 1.
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Theorem (ML 2018)

Let G be a commutative semigroup with unit. For every f € C(G)
the following are equivalent.

(i) There is an n > 2 such that f(x1 + ...+ xn) is decomposable.
(ii) f is a generalized exponential polynomial.

Note This is not a “good” characterization of GEP.
Q(x1 + x2 + x3) is decomposable, but Q(x1 + x2) is not. That is,

Corollary

af € C(Fy) s.t. f(x1+ ...+ xn) is decomposable for some n, but
f(x1 + x2) is not decomposable.
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Is it true that if G is a discrete Abelian group and V is a variety of
C(G) then V N GEP is dense in V7

Spectral analysis holds on G if every variety 0 # V C G contains
an exponential.

Gurevich Spectral analysis does not hold on R?.

r0(G) is the cardinality of a maximal independent system of
elements of infinite order.

Theorem (ML, G. Székelyhidi 2005)

Spectral analysis holds on a discrete Abelian group G if and only if
I’o(G) < 2o,

Corollary

Generalized spectral synthesis fails on G if ro(G) > 2%. In
particular, it fails on R (as a discrete group).
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Local spectral synthesis holds on F,.

M = {measures on F,, with finite support}.

M is (more or less) isomorphic to the algebra of differential
operators on C[x1, x, . . .].

Theorem (ML 2014)

If J is an ideal of C[x1, x2,...] and f € C[x1,x2,...] \ J, then there
is a differential operator D and there is a vector (c1, ¢, ...) s.t.
Dp(c1, cp,...) =0 for every p € J and Df(cy, c2,...) # 0.

Let J = <x12,x1 — X2,X1 — X3,...). Then x; ¢ J. Then
c=(0,0,...)and D :Zf’zla%k do.
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K ="? (CH) = k =N;. Is k > N; consistent with ZFC?
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Local spectral synthesis on F,, is based on:

If Jis an ideal of C[x1, x2,...] and f € C[x1,x2,...] \ J, then there
is a differential operator D and there is a vector (ci, ¢, .. .) s.t.
Dp(ci, c2,...) =0 for every p € J and Df(cy, c2,...) # 0.

Theorem (P. Komjath, ML 2014)

It is consistent with ZFC that 8y < 28, and the analogous
statement is false in C[X], if | X| = N;.

Conjecture

k = N1, independently of the value of the continuum.
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Theorem (R. Katz, M. Krebs, A. Shaheen 2014)

If f: R?2 — C is such that the sum of the values of f at the
vertices of any unit square is zero, then f = 0.

Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.

f(x)+ f(x+ay)+f(x+by)+f(x+(a+ b)y)=0 *)
(x,y €C, ly[=1)

Let F C C be finite, and let G be the additive subgroup of C
generated by F. The set V of functions f: G — C s.t. (*) holds
for every x € G, y € F, |y| = 1 is a variety. G is finitely generated
and torsion free, so isomorphic to Z" for some n. By Lefranc’
theorem, V contains an exponential. So we may assume that f is
an exponential: f(x +y) = f(x)f(y),
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Let F C C be finite, and let G be the additive subgroup of C
generated by F. The set V of functions f: G — C s.t. (*) holds
for every x € G, y € F, |y| = 1 is a variety. G is finitely generated
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1+ f(ay) + f(by) + f(ay)f(by) = (a+ f(ay)(1 + f(by)) =0
(Iy| = 1).
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