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Spectral synthesis is a study of whether functions in a translation
invariant closed subspace (a variety) can be synthesized from
certain simple functions, mostly exponential polynomials, which are
contained in the variety.

Let G be a topological group, and let C (G ) = {f : G → C : f is
continuous} endowed with the topology of convergence on
compact subsets of G .

Variety: translation invariant closed subspace of C (G ).
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Theorem (L. Schwartz 1947)

Spectral synthesis holds on R: every variety V ⊂ C (R) is spanned
by the exponential polynomials contained in V .

Exponential polynomials are the functions
∑n

i=1 pi (x) · ecix , where
pi ∈ C[x ] and ci ∈ C for every i = 1, . . . , n.

Theorem (D.I. Gurevich 1975)

Spectral synthesis does not hold on R2. Moreover, there is a
variety 0 6= V ⊂ C (R2) not containing any exponential.

Duality: M = {Borel measures on R with compact support} is an
algebra under addition and convolution.

If V ⊂ C (R) is a variety, then V ⊥ = {µ ∈M : f ∗ µ = 0 (f ∈ V )}
is an ideal of M;
if I ⊂M is an ideal then I⊥ = {f ∈ C (R) : f ∗ µ = 0 (µ ∈ I )} is a
variety.
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Theorem (Ehrenpreis, Malgrange 1955)

Let µ be a measure on Rn with compact support, and let
V = {f ∈ C (Rn) : µ ∗ f = 0}. Then spectral synthesis holds in V .

Theorem (M. Lefranc 1958)

Spectral synthesis holds on Zn (endowed with the discrete
topology).

M = {measures with finite support}.

M is (more or less) isomorphic to the algebra of differential
operators on C[x1, . . . , xn].

Lefranc’s theorem follows from

Krull’s theorem If J is an ideal of C[x1, . . . , xn] and
f ∈ C[x1, . . . , xn] \ J, then there is a differential operator D s.t.
Dp(0, . . . , 0) = 0 for every p ∈ J and Df (0, . . . , 0) 6= 0.
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Hewitt-Ross 1970, 2002: “The entire theory, and its principal
result (of L. Schwartz) have been carried over to all locally
compact Abelian groups in two independent and simultaneous
works by R.J. Elliott [1965] and J.E. Gilbert [1966].”

A function m ∈ C (G ) is an exponential if m 6= 0 and
m(x + y) = m(x) ·m(y) (x , y ∈ G ).

Exponential polynomials are the functions of the form
∑n

i=1 pi ·mi ,
where m1, . . . ,mn are exponentials and p1, . . . , pn are polynomials.

Polynomial (by Elliott): P(a1, . . . , an), where P ∈ C[x1, . . . , xn]
and a1, . . . , an are “integer representations of G ”.

Polynomial (by Gilbert): P(a1, . . . , an), where P ∈ C[x1, . . . , xn]
and a1, . . . , an belong to a fix a set X of real characters of G
(homomorphisms of G into R) separating the points of G .

Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.
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Theorem (Elliott 1965, Gilbert 1966)

Let G be a locally compact Abelian group, and let µ be a measure
on G with compact support. Then spectral synthesis holds in
µ⊥ = {f ∈ C (G ) : µ ∗ f = 0}.

Let G = Fω be the free Abelian group generated by (countably)
infinitely many generators.

Fω = {(x1, x2, . . .) : xi ∈ Z (i = 1, 2, . . .), ∃ i0, xi = 0 (i > i0)}.

Let X be the set of all coordinate functions xn. Then X is a set of
real characters of G separating the points of G .
Let a : G → C be the additive function a(x1, x2, . . .) =

∑∞
i=1 xi .

Then Va = {c1 · a + c2 : c1, c2 ∈ C} is a variety, and every
exponential polynomial in Va is constant (c · 1).
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Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



Establishing the notion of polynomials

Vf = the linear hull of the translates of f .

Theorem (L. Schwartz 1947)

A continuous function f ∈ C (R) is an exponential polynomial if
and only if Vf is of finite dimension.

f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

Theorem (T. Levi-Civita 1913)

If f ∈ C∞(R) satisfies a Levi-Civita equation, then f is an
exponential polynomial.

Theorem (P. M. Anselone and J. Korevaar 1964)

A continuous function f ∈ C (Rp) is an exponential polynomial if
and only if Vf is of finite dimension.



J.J. Stone 1960, M.A. McKiernan 1977 and others: Let G be an
Abelian topological semigroup with unit.

For every f ∈ C (G ), Vf is of finite dimension if and only if f
belongs to the algebra generated by the exponentials and the
continuous homomorphisms (additive functions) of G into C.

p ∈ C (G ) is a polynomial if p = P(a1, . . . , an), where
P ∈ C[x1, . . . , xn] and a1, . . . , an are continuous homomorphisms of
G into C.

Exponential polynomials are the functions of the form
f =

∑k
i=1 pi ·mi , where m1, . . . ,mk are exponentials and

p1, . . . , pk are polynomials.

Theorem (Elliott 1965)

Spectral synthesis holds on every discrete Abelian group.

Proof: It is true on every finitely generated subgroup of G by
Lefranc’s theorem, so it is true on G . �
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Z. Gajda ∼1985 Is this correct?

Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on Fω.

Fω = {(x1, x2, . . .) : xi ∈ Z (i = 1, 2, . . .), ∃ i0, xi = 0 (i > i0)}

Q(x) =
∑∞

i=1 x2
i (x = (x1, x2, . . .))

Q is not a polynomial, as dimVQ =∞.

Every element of VQ is of the form c1 · Q + f + c2, where
c1, c2 ∈ C and f is additive.

The only exponential contained in VQ is the identically 1 function,
and the polynomials contained in VQ are the functions f + c where
f is additive and c is constant.

Consequently, Q is not in the closure of polynomials contained in
VQ .
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Theorem (L. Székelyhidi 2004)

Spectral synthesis does not hold on Fω.

Fω = {(x1, x2, . . .) : xi ∈ Z (i = 1, 2, . . .), ∃ i0, xi = 0 (i > i0)}

Q(x) =
∑∞

i=1 x2
i (x = (x1, x2, . . .))

Q is not a polynomial, as dimVQ =∞.

Every element of VQ is of the form c1 · Q + f + c2, where
c1, c2 ∈ C and f is additive.

The only exponential contained in VQ is the identically 1 function,
and the polynomials contained in VQ are the functions f + c where
f is additive and c is constant.

Consequently, Q is not in the closure of polynomials contained in
VQ .



Z. Gajda ∼1985 Is this correct?

Theorem (L. Székelyhidi 2004)
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∆hf (x) = f (x + h)− f (x) (f : G → C, x , h ∈ G )

f ∈ C (G ) is a generalized polynomial if (∃k ≥ 0) ∆h1 . . .∆hk f = 0
∀h1, . . . , hk . deg f = (the smallest such k)− 1.

GP = set of generalized polynomials on G . GP is an algebra.

If f is additive then ∆hf is constant and ∆h1∆h2f = 0. Thus
f ∈ GP and deg f = 1. Every polynomial is in GP.

Q ∈ GP and degQ = 2, as ∆hQ is additive for every h.

f ∈ GEP (generalized exponential polynomials) if f =
∑k

i=1 pi ·mi ,
where m1, . . . ,mk are exponentials and p1, . . . , pk ∈ GP.

VQ ⊂ GP ⊂ GEP.

Is it true that if G is a discrete Abelian group and V is a variety of
C (G ) then V ∩ GEP is dense in V ? (Generalized spectral
synthesis)
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Characterizing the classes P (polynomials), EP (exponential
polynomials, GP (generalized polynomials) and GEP generalized
exponential polynomials

f ∈ EP if f =
∑k

i=1 pi ·mi , where mi is an exponential and pi ∈ P
(i = 1, . . . , k). (Definition)

f ∈ EP ⇐⇒ f ∈ C (G ) and Vf is of finite dimension. (Good
characterization by “inner properties” of f )

f ∈ GP ⇐⇒ f ∈ C (G ) and (∃k) (∀h1, . . . , hk) ∆h1 . . .∆hk f = 0.
(Definition and good characterization)
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f ∈ P if f = P(a1, . . . , an), where P ∈ C[x1, . . . , xn] and a1, . . . , an
are continuous homomorphisms.
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f ∈ P ⇐⇒ f ∈ GP and f ∈ EP. (Good characterization)
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m1, . . . ,mk are distinct exponentials and p1, . . . , pk ∈ GP \ {0} is
unique.

If f ∈ GP ∩ EP then f · 1 =
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i=1 pi ·mi (p1, . . . , pk ∈ P).

k = 1, f = p1 ∈ P. Thus GP ∩ EP ⊂ P. �
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f (x + y) =
∑k

i=1 gi (x) · hi (y) (Levi-Civita equation)

X 6= ∅. F : X n → C is decomposable if F =
∑k

i=1 ui · vi , where
ui , vi : X n → C (i = 1, . . . , k), and ui only depends on the variables
belonging to a set ∅ 6= Ei ( {x1, . . . , xn}, and vi only depends on
the variables belonging to {x1, . . . , xn} \ Ei (i = 1, . . . , k).

u1(x) · v1(y , z) + u2(y) · v2(x , z) + u3(z) · v3(x , y)

is decomposable.

Fact For every f ∈ C (G ),
f (x1 + x2) is decomposable ⇐⇒ f satisfies a Levi-Civita
equation ⇐⇒ dimVf <∞ ⇐⇒ f ∈ EP.

Let G be a topological semigroup with unit.

f ∈ C (G ) is a matrix function if f is contained in a finite
dimensional translation invariant subspace of C (G ).

f is an almost matrix function if, for every finite E ⊂ G , there is a
finite dimensional subspace of C (G ) invariant under the
subsemigroup generated by E and containing f .
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Theorem (K. Shulman 2010)

If f ∈ C (G ) is such that f (x1 · · · xn) is decomposable for some
n > 1, then f is an almost matrix function.

Theorem (K. Shulman 2010)

If G is the union of an increasing net of topologically p-generated
subsemigroups, then, whenever f ∈ C (G ) is such that f (x1 · · · xn)
is decomposable for some n > 1, then f is a matrix function.

Theorem (K. Shulman 2010)

If f ∈ C (Rp) is such that f (x1 + . . .+ xn) is decomposable for
some n > 1, then f is an exponential polynomial.

Corollary

For every f ∈ C (Rp), if f (x1 + . . .+ xn) is decomposable for some
n > 1, then f (x1 + . . .+ xn) is decomposable for every n > 1.
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Theorem (ML 2018)

Let G be a commutative semigroup with unit. For every f ∈ C (G )
the following are equivalent.

(i) There is an n ≥ 2 such that f (x1 + . . .+ xn) is decomposable.

(ii) f is a generalized exponential polynomial.

Note This is not a “good” characterization of GEP.

Q(x1 + x2 + x3) is decomposable, but Q(x1 + x2) is not. That is,

Corollary

∃f ∈ C (Fω) s.t. f (x1 + . . .+ xn) is decomposable for some n, but
f (x1 + x2) is not decomposable.
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Is it true that if G is a discrete Abelian group and V is a variety of
C (G ) then V ∩ GEP is dense in V ?

Spectral analysis holds on G if every variety 0 6= V ⊂ G contains
an exponential.

Gurevich Spectral analysis does not hold on R2.

r0(G ) is the cardinality of a maximal independent system of
elements of infinite order.

Theorem (ML, G. Székelyhidi 2005)

Spectral analysis holds on a discrete Abelian group G if and only if
r0(G ) < 2ℵ0 .

Corollary

Generalized spectral synthesis fails on G if r0(G ) ≥ 2ℵ0 . In
particular, it fails on R (as a discrete group).
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Theorem (ML 2014)

Local spectral synthesis holds on Fω.

M = {measures on Fω with finite support}.

M is (more or less) isomorphic to the algebra of differential
operators on C[x1, x2, . . .].

Theorem (ML 2014)

If J is an ideal of C[x1, x2, . . .] and f ∈ C[x1, x2, . . .] \ J, then there
is a differential operator D and there is a vector (c1, c2, . . .) s.t.
Dp(c1, c2, . . .) = 0 for every p ∈ J and Df (c1, c2, . . .) 6= 0.

Let J = 〈x2
1 , x1 − x2, x1 − x3, . . .〉. Then x1 /∈ J. Then

c = (0, 0, . . .) and D =
∑∞

k=1
∂

∂xk
do.
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Theorem (ML 2014)

There exists a cardinal ℵ1 ≤ κ ≤ 2ℵ0 s.t. for every discrete Abelian
group G , local spectral synthesis holds on G if and only if
r0(G ) < κ.

spectral synthesis holds on G ⇐⇒ r0(G ) < ℵ0
generalized spectral synthesis holds on G ⇐⇒ r0(G ) < ℵ0
local spectral synthesis holds on G ⇐⇒ r0(G ) < κ
spectral analysis holds on G ⇐⇒ r0(G ) < 2ℵ0

κ =? (CH)=⇒ κ = ℵ1. Is κ > ℵ1 consistent with ZFC?
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Lefranc’s theorem is based on Krull’s theorem: If J is an ideal in
C[x1, . . . , xn] and f ∈ C[x1, . . . , xn] \ J, then there is a differential
operator D s.t. Dp(0, . . . , 0) = 0 for every p ∈ J, and
Df (0, . . . , 0) 6= 0.

Local spectral synthesis on Fω is based on:
If J is an ideal of C[x1, x2, . . .] and f ∈ C[x1, x2, . . .] \ J, then there
is a differential operator D and there is a vector (c1, c2, . . .) s.t.
Dp(c1, c2, . . .) = 0 for every p ∈ J and Df (c1, c2, . . .) 6= 0.

Theorem (P. Komjáth, ML 2014)

It is consistent with ZFC that ℵ1 < 2ℵ0 , and the analogous
statement is false in C[X ], if |X | = ℵ1.

Conjecture

κ = ℵ1, independently of the value of the continuum.
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Theorem (R. Katz, M. Krebs, A. Shaheen 2014)

If f : R2 → C is such that the sum of the values of f at the
vertices of any unit square is zero, then f ≡ 0.

Theorem (G. Kiss, ML, C. Vincze 2018)

This is true for every parallelogram as well.

Let 0, a, b, a + b be the vertices of P.
f (x) + f (x + ay) + f (x + by) + f (x + (a + b)y) = 0 (*)
(x , y ∈ C, |y | = 1)
Let F ⊂ C be finite, and let G be the additive subgroup of C
generated by F . The set V of functions f : G → C s.t. (*) holds
for every x ∈ G , y ∈ F , |y | = 1 is a variety. G is finitely generated
and torsion free, so isomorphic to Zn for some n. By Lefranc’
theorem, V contains an exponential. So we may assume that f is
an exponential: f (x + y) = f (x)f (y),
1 + f (ay) + f (by) + f (ay)f (by) = (a + f (ay)(1 + f (by)) = 0
(|y | = 1).
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