Density of weighted multivariate polynomials

András Kroó

Alfréd Rényi Institute of Mathematics

First Analysis Mathematica International Conference August 12-17, 2019, Budapest, Hungary

1. Weierstrass Theorem and its variations

Trigonometric Weierstrass approximation theorem: any 2π periodic continuous function f(x) is a uniform limit on $[-\pi, \pi]$ of trigonometric polynomials of degree n as $n \to \infty$. Substituting $t = \tan \frac{x}{2}, x \in (-\pi, \pi)$ transforms 2π periodic continuous functions into continuous functions $f \in C_0(\mathbb{R})$ which have equal finite limits at $\pm \infty$, and the trigonometric polynomials of degree n become rational functions $(1+t^2)^{-n}p_{2n}(t)$ with $p_{2n}(t)$ being an algebraic polynomial of degree at most 2n.

This leads to an equivalent version of the trigonometric Weierstrass theorem:

Every $f \in C_0(\mathbb{R})$ with equal finite limits at $\pm \infty$ is a uniform limit on \mathbb{R} of weighted algebraic polynomials

$$w(t)^{-2n}p_{2n}(t)$$
, $w(t) := \sqrt{1+t^2}$, deg $p_{2n} \le 2n$.

1. Weierstrass Theorem and its variations

Trigonometric Weierstrass approximation theorem: any 2π periodic continuous function f(x) is a uniform limit on $[-\pi, \pi]$ of trigonometric polynomials of degree n as $n \to \infty$. Substituting $t = \tan \frac{x}{2}, x \in (-\pi, \pi)$ transforms 2π periodic continuous functions into continuous functions $f \in C_0(\mathbb{R})$ which have equal finite limits at $\pm \infty$, and the trigonometric polynomials of degree n become rational functions $(1+t^2)^{-n}p_{2n}(t)$ with $p_{2n}(t)$ being an algebraic polynomial of degree at most 2n.

This leads to an equivalent version of the trigonometric Weierstrass theorem:

Every $f \in C_0(\mathbb{R})$ with equal finite limits at $\pm \infty$ is a uniform limit on \mathbb{R} of weighted algebraic polynomials

$$w(t)^{-2n}p_{2n}(t)$$
, $w(t) := \sqrt{1+t^2}$, deg $p_{2n} \le 2n$.

Problem: Characterize those weights for which density in $C_0(\mathbb{R}^d)$ holds with weighted polynomials

$$w^{-n}p_n$$
, deg $p_n \le n$.

Clearly, we must have $w(\mathbf{x}) \geq c|\mathbf{x}|$ in order for $w^{-n}p_n$ to be bounded in \mathbb{R}^d .

Above problem received a considerable attention in case when the even weight w(t) grows at ∞ faster than t. Obviously this implies that

$$w(t)^{-n}p_n(t) \to 0, t \to \pm \infty$$

for all polynomials of degree at most n that is weighted polynomials can not provide uniform approximation on all of the real line. In this case weighted polynomials can be dense only for functions with $finite\ support$ and this finite domain of approximation which depends on w is determined by methods of potential theory.

Above problem received a considerable attention in case when the even weight w(t) grows at ∞ faster than t. Obviously this implies that

$$w(t)^{-n}p_n(t) \to 0, t \to \pm \infty$$

for all polynomials of degree at most n that is weighted polynomials can not provide uniform approximation on all of the real line. In this case weighted polynomials can be dense only for functions with $finite\ support$ and this finite domain of approximation which depends on w is determined by methods of potential theory.

A model case of this phenomena is provided by Freud weights $w_{\alpha}(t) := e^{|t|^{\alpha}}$. If $\alpha \geq 1$ a function $f \in C(\mathbb{R})$ is a uniform limit of $w_{\alpha}(t)^{-n}p_{n}(t)$, deg $p_{n} \leq n$, if and only if f vanishes outside the interval $[-a_{\alpha}, a_{\alpha}]$ with a_{α} being a certain parameter depending only on α .

Above problem received a considerable attention in case when the even weight w(t) grows at ∞ faster than t. Obviously this implies that

$$w(t)^{-n}p_n(t) \to 0, t \to \pm \infty$$

for all polynomials of degree at most n that is weighted polynomials can not provide uniform approximation on all of the real line. In this case weighted polynomials can be dense only for functions with $finite\ support$ and this finite domain of approximation which depends on w is determined by methods of potential theory.

A model case of this phenomena is provided by Freud weights $w_{\alpha}(t) := e^{|t|^{\alpha}}$. If $\alpha \geq 1$ a function $f \in C(\mathbb{R})$ is a uniform limit of $w_{\alpha}(t)^{-n}p_{n}(t)$, deg $p_{n} \leq n$, if and only if f vanishes outside the interval $[-a_{\alpha}, a_{\alpha}]$ with a_{α} being a certain parameter depending only on α .

A similar situation occurs in case of approximation by incomplete polynomials given by $\sum_{n\theta \leq k \leq n} a_k x^k$, $0 < \theta < 1$ which can be regarded as weighted polynomials $x^{n\theta/(\theta-1)}p_n$, deg $p_n \leq n$, i.e., $w_{\theta}(x) := x^{\theta/(1-\theta)}$ in this case. Then $f \in C[0,1]$ can be uniformly approximated by a sequence of θ -incomplete polynomials if and only if it vanishes on $[0, \theta^2]$. Hence similarly to the case of Freud weights the functions must vanish on a substantial part of their domain in order for the weighted approximation to hold.

Consider the space $C_0(\mathbb{R}^d)$ of continuous functions with equal limits at infinity along lines passing through the origin, i.e.,

$$C_0(\mathbb{R}^d) := \{ f \in C(\mathbb{R}^d) : \exists r_f \in C(S^{d-1}), \lim_{|t| \to \infty} f(t\mathbf{x}) = r_f(\mathbf{x}), \mathbf{x} \in S^{d-1} \}.$$

Given a positive even weight w on \mathbb{R}^d we approximate $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-n}p_n$ on \mathbb{R}^d , where $p_n \in P_n^d$ are multivariate polynomials of d variables of degree at most n. Assume in addition, that $tw(\frac{\mathbf{x}}{t})$ is monotone increasing for t > 0 for every fixed $\mathbf{x} \in \mathbb{R}^d$, and has a continuous positive limit as $t \to 0$. Then, in particular,

$$w(t\mathbf{x}) \sim |t|w(\mathbf{x}), t \to \infty$$

i.e. the weight is of order |t| at infinity. Such weights will be called **admissible**. Note that for admissible weights $w^{-2n}p_{2n} \in C_0(\mathbb{R}^d)$ for any $p_{2n} \in P_{2n}^d$ and $n \in \mathbb{N}$.

Consider the space $C_0(\mathbb{R}^d)$ of continuous functions with equal limits at infinity along lines passing through the origin, i.e.,

$$C_0(\mathbb{R}^d) := \{ f \in C(\mathbb{R}^d) : \exists r_f \in C(S^{d-1}), \lim_{|t| \to \infty} f(t\mathbf{x}) = r_f(\mathbf{x}), \mathbf{x} \in S^{d-1} \}.$$

Given a positive even weight w on \mathbb{R}^d we approximate $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-n}p_n$ on \mathbb{R}^d , where $p_n \in P_n^d$ are multivariate polynomials of d variables of degree at most n. Assume in addition, that $tw(\frac{\mathbf{x}}{t})$ is monotone increasing for t > 0 for every fixed $\mathbf{x} \in \mathbb{R}^d$, and has a continuous positive limit as $t \to 0$. Then, in particular,

$$w(t\mathbf{x}) \sim |t|w(\mathbf{x}), t \to \infty$$

i.e. the weight is of order |t| at infinity. Such weights will be called **admissible**. Note that for admissible weights $w^{-2n}p_{2n} \in C_0(\mathbb{R}^d)$ for any $p_{2n} \in P_{2n}^d$ and $n \in \mathbb{N}$.

Given an admissible weight w we homogenize it setting

$$w^*(\mathbf{x}, t) := |t| w\left(\frac{\mathbf{x}}{t}\right) : \mathbb{R}^{d+1} \mapsto \mathbb{R}^+, \ \mathbf{x} \in \mathbb{R}^d, \ t \neq 0.$$

Example.
$$w(\mathbf{x}) = \sqrt{1 + x_1^2 + \dots + x_d^2}, \ w^*(\mathbf{x}, t) = \sqrt{t^2 + x_1^2 + \dots + x_d^2}.$$

Theorem. (AK, 2019) Let w be a convex admissible weight on \mathbb{R}^d , $d \geq 1$. In addition, if d > 1 assume that w is piecewise C^1 , i.e., with some $s \in \mathbb{N}$ we have $w = \max\{w_j : 1 \leq j \leq s\}$ where each w_j is admissible convex and $w_j^* \in C^1(\mathbb{R}^{d+1} \setminus \{0\}), 1 \leq j \leq s$. Then for every $f \in C_0(\mathbb{R}^d)$ there exist polynomials $p_{2n} \in P_{2n}^d$ so that

$$w^{-2n}p_{2n} \to f, \ n \to \infty$$

uniformly on \mathbb{R}^d .

Theorem. (AK, 2019) Let w be a convex admissible weight on \mathbb{R}^d , $d \geq 1$. In addition, if d > 1 assume that w is piecewise C^1 , i.e., with some $s \in \mathbb{N}$ we have $w = \max\{w_j : 1 \leq j \leq s\}$ where each w_j is admissible convex and $w_j^* \in C^1(\mathbb{R}^{d+1} \setminus \{0\}), 1 \leq j \leq s$. Then for every $f \in C_0(\mathbb{R}^d)$ there exist polynomials $p_{2n} \in P_{2n}^d$ so that

$$w^{-2n}p_{2n} \to f, \ n \to \infty$$

uniformly on \mathbb{R}^d .

Thus when d=1 the **convexity** of the admissible weight yields the density of weighted polynomials $w^{-2n}p_{2n}$ in the space $C_0(\mathbb{R})$. If d>1 we need in addition the piecewise C^1 smoothness of weights in order for the density to hold. It is plausible that the convexity of admissible weights should suffice for the density of weighted polynomials $w^{-2n}p_{2n}$ in $C_0(\mathbb{R}^d)$ when d>1, as well. Thus we would like to offer the next conjecture which would provide a full analogue of weighted Weierstrass approximation theorem in \mathbb{R}^d .

Conjecture. For any convex admissible weight on \mathbb{R}^d , $d \geq 1$ and $f \in C_0(\mathbb{R}^d)$ there exist polynomials $p_{2n} \in P_{2n}^d$ so that

$$w^{-2n}p_{2n} \to f, \ n \to \infty$$

uniformly on \mathbb{R}^d .

Example. Let l_{α} norm of $\mathbf{x} = (x_1, ..., x_d) \in \mathbb{R}^d$ be given by the relations

$$|\mathbf{x}|_{\alpha} := \begin{cases} (|x_1|^{\alpha} + \dots + |x_d|^{\alpha})^{\frac{1}{\alpha}}, \\ \max_{1 \le j \le d} |x_j|, & \alpha = \infty. \end{cases}$$

Consider the admissible weights

$$w_{\alpha}(\mathbf{x}) := (1 + |x_1|^{\alpha} + ... + |x_d|^{\alpha})^{\frac{1}{\alpha}} = (1 + |\mathbf{x}|_{\alpha}^{\alpha})^{\frac{1}{\alpha}}, \ \mathbf{x} = (x_1, ..., x_d) \in \mathbb{R}^d.$$

Note that w_{α} is **convex** on \mathbb{R}^d if $\alpha \geq 1$. It is also easy to check that these weights are C^1 for $1 < \alpha < \infty$ and piecewise C^1 if $\alpha = 1, \infty$. Weights $w_{\alpha}(\mathbf{x}), \alpha \geq 1$ provide a model of weights for which conditions of Theorem 1 hold.

Corollary. Let $1 \le \alpha \le \infty$. Then for every $f \in C_0(\mathbb{R}^d)$, $d \ge 1$ there exist polynomials $p_{2n} \in P_{2n}^d$ so that

$$w_{\alpha}^{-2n}p_{2n} \to f, \ n \to \infty$$

uniformly on \mathbb{R}^d .

2. Weierstrass type weighted approximation with non convex weights

Admissibility of the weight appears to be a natural requirement for approximating every function in $C_0(\mathbb{R}^d)$. How about the convexity of the weight? For instance, $w_{\alpha}(\mathbf{x}) = (1 + |x_1|^{\alpha} + ... + |x_d|^{\alpha})^{\frac{1}{\alpha}}$ when $0 < \alpha < 1$?

It turns out that non convexity of the weight changes the situation drastically. Indeed, it was proved recently by Kroó and Totik that

When d=1 and $0 < \alpha < 1$ there exist weighted polynomials $w_{\alpha}^{-2n}p_{2n}, p_n \in P_{2n}^1$, $n \in \mathbb{N}$, converging to $f \in C(\mathbb{R})$ uniformly on \mathbb{R} if and only if $f(0) = f(\infty) = f(-\infty) = 0$.

Here $f(\infty)$, $f(-\infty)$ stand for the corresponding limits at infinity. Thus some additional restrictions need to be imposed on the function, namely it must vanish at a certain *exceptional set*.

Now consider the multivariate approximation by $w_{\alpha}^{-2n}p_{2n}$, $p_{2n} \in P_{2n}^d$ when $\alpha < 1$, that is the weight is not convex.

What are the exceptional sets in the multivariate case?

Denote by

$$L^{d} := \{ \mathbf{x} = (x_{1}, ..., x_{d}) \in K_{\alpha}^{d} : x_{1} \cdot ... \cdot x_{d} = 0 \}$$

the union of all coordinate planes.

Now consider the multivariate approximation by $w_{\alpha}^{-2n}p_{2n}$, $p_{2n} \in P_{2n}^d$ when $\alpha < 1$, that is the weight is not convex.

What are the exceptional sets in the multivariate case?

Denote by

$$L^d := \{ \mathbf{x} = (x_1, ..., x_d) \in K_{\alpha}^d : x_1 \cdot ... \cdot x_d = 0 \}$$

the union of all coordinate planes.

Now we identify the exceptional zero set for functions admitting weighted polynomial approximation on \mathbb{R}^d , d > 1 with the non convex w_{α} , $\alpha < 1$. Essentially, in multivariate case the exceptional zero set consists of the

union of all coordinate planes L^d and the infinity.

Theorem. (AK, 2019) Let $0 < \alpha < 1$ and $d \ge 2$. If $f \in C_0(\mathbb{R}^d)$ is a uniform limit on \mathbb{R}^d of weighted polynomials $w_{\alpha}^{-2n}p_{2n}, p_{2n} \in P_{2n}^d$ then necessarily f = 0 on $L^d \cup \{\infty\}$. Moreover, if $0 < \alpha < 1$ is rational then any $f \in C(\mathbb{R}^d)$ which vanishes on $L^d \cup \{\infty\}$ is a uniform limit on \mathbb{R}^d of weighted polynomials $w_{\alpha}^{-2n}p_{2n}, p_{2n} \in P_{2n}^d$.

The sufficiency in the above theorem for irrational $0 < \alpha < 1$ (and d > 1) is an open problem.

3.Density of homogeneous polynomials on 0-symmetric star like domains

The problem of approximating $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-2n}p_{2n}$ uniformly on \mathbb{R}^d is closely related to uniform approximation on the boundary of θ symmetric star like domains by multivariate **homogeneous** polynomials

$$h \in H_n^d := \{ \sum_{|\mathbf{k}|=n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} : a_{\mathbf{k}} \in \mathbb{R} \}.$$

In fact a certain duality can be established between this two problems.

3.Density of homogeneous polynomials on 0-symmetric star like domains

The problem of approximating $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-2n}p_{2n}$ uniformly on \mathbb{R}^d is closely related to uniform approximation on the boundary of θ symmetric star like domains by multivariate **homogeneous** polynomials

$$h \in H_n^d := \{ \sum_{|\mathbf{k}|=n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} : a_{\mathbf{k}} \in \mathbb{R} \}.$$

In fact a certain duality can be established between this two problems.

An admissible weight $w \in C(\mathbb{R}^d)$ is associated with the 0-symmetric star like domain in \mathbb{R}^{d+1}

$$K_w := \{ (\mathbf{x}, t) \in \mathbb{R}^{d+1} : w^*(\mathbf{x}, t) \le 1 \},$$

where $w^*(\mathbf{x},t)$ is the homogenization of w. K_w is convex whenever w is convex.

3.Density of homogeneous polynomials on 0-symmetric star like domains

The problem of approximating $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-2n}p_{2n}$ uniformly on \mathbb{R}^d is closely related to uniform approximation on the boundary of θ symmetric star like domains by multivariate **homogeneous** polynomials

$$h \in H_n^d := \{ \sum_{|\mathbf{k}|=n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} : a_{\mathbf{k}} \in \mathbb{R} \}.$$

In fact a certain duality can be established between this two problems.

An admissible weight $w \in C(\mathbb{R}^d)$ is associated with the 0-symmetric star like domain in \mathbb{R}^{d+1}

$$K_w := \{ (\mathbf{x}, t) \in \mathbb{R}^{d+1} : w^*(\mathbf{x}, t) \le 1 \},$$

where $w^*(\mathbf{x},t)$ is the homogenization of w. K_w is convex whenever w is convex.

Conversely, when K is a 0-symmetric star like set of points $\mathbf{z} = (\mathbf{x}, t) \in \mathbb{R}^{d+1}$ with the Minkowski functional $\phi_K(\mathbf{z}) := \inf\{\alpha > 0 : \frac{\mathbf{z}}{\alpha} \in K\}$ we can associate this set with an even positive weight on \mathbb{R}^d defined by the relation

$$w_K(\mathbf{x}) := \phi_K(\mathbf{x}, 1), \ \mathbf{x} \in \mathbb{R}^d.$$

The next statement gives a duality between the problem of approximating $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-2n}p_{2n}$ uniformly on \mathbb{R}^d and uniform approximation on the boundary of θ -symmetric star like domains by multivariate **homogeneous** polynomials.

Duality Principle. (i) Let $w \in C(\mathbb{R}^d)$, $d \geq 1$ be an admissible weight on \mathbb{R}^d . If for $\forall g \in C_0(\mathbb{R}^d)$ there exist $p_{2n} \in P_{2n}^d$ so that $w^{-2n}p_{2n} \to g$, $n \to \infty$ uniformly on \mathbb{R}^d then for each even $f \in C(\partial K_w)$ there exist homogeneous polynomials $h_{2n} \in H_{2n}^{d+1}$ for which $f = \lim h_{2n}$ uniformly on ∂K_w .

The next statement gives a duality between the problem of approximating $f \in C_0(\mathbb{R}^d)$ by weighted polynomials $w^{-2n}p_{2n}$ uniformly on \mathbb{R}^d and uniform approximation on the boundary of θ -symmetric star like domains by multivariate **homogeneous** polynomials.

Duality Principle. (i) Let $w \in C(\mathbb{R}^d)$, $d \geq 1$ be an admissible weight on \mathbb{R}^d . If for $\forall g \in C_0(\mathbb{R}^d)$ there exist $p_{2n} \in P_{2n}^d$ so that $w^{-2n}p_{2n} \to g$, $n \to \infty$ uniformly on \mathbb{R}^d then for each even $f \in C(\partial K_w)$ there exist homogeneous polynomials $h_{2n} \in H_{2n}^{d+1}$ for which $f = \lim h_{2n}$ uniformly on ∂K_w .

(ii) Conversely, let K be any 0-symmetric star like set of points $(\mathbf{x}, t) \in \mathbb{R}^{d+1}$. Assume that for each even function $f \in C(\partial K)$ there exist homogeneous polynomials $h_{2n} \in H_{2n}^{d+1}$ such that $f = \lim h_{2n}$ uniformly on ∂K . Then for every $g \in C_0(\mathbb{R}^d)$ there exist polynomials $p_{2n} \in P_{2n}^d$ so that $w_K^{-2n}p_{2n} \to g$, $n \to \infty$ uniformly on \mathbb{R}^d .

The following conjecture which may be regarded as Weierstrass type density theorem for homogeneous polynomials attracted considerable attention in the last decade

Conjecture: For any 0-symmetric convex body $K \subset \mathbb{R}^d$ and every even $f \in C(\partial K)$ there exist homogeneous polynomials $h_{2n} \in H_{2n}^d$ such that $f = \lim_{n \to \infty} h_{2n}$ uniformly on ∂K .

The following conjecture which may be regarded as Weierstrass type density theorem for homogeneous polynomials attracted considerable attention in the last decade

Conjecture: For any 0-symmetric convex body $K \subset \mathbb{R}^d$ and every even $f \in C(\partial K)$ there exist homogeneous polynomials $h_{2n} \in H_{2n}^d$ such that $f = \lim_{n \to \infty} h_{2n}$ uniformly on ∂K .

The conjecture has been verified in the following 3 cases:

- (i) When **d=2** (Benko-Kroó, Varju)
- (ii) For any **0**-symmetric convex **polytope** in \mathbf{R}^d , d > 2. (Varju)
- (iii) For any **0**-symmetric **regular** convex body $K \subset \mathbf{R}^d, d > 2$. (Kroó-Szabados)

Note: In case of arbitrary $f \in C(\partial K)$ above statements hold for $h_{2n} + h_{2n+1} \in H_{2n}^d + H_{2n+1}^d$ so that $f = \lim_{n \to \infty} (h_{2n} + h_{2n+1})$ uniformly on ∂K .

What happens with homogeneous polynomial approximation on non convex 0-symmetric convex bodies $K \subset \mathbb{R}^d$?

It turns out that for every 0-symmetric star like domain K in \mathbb{R}^d there exists an exceptional 0-symmetric set $Z(K) \subset \partial K$ so that for any even $f \in C(\partial K)$ the following statements are equivalent

- (i) there exist $h_{2n} \in H_{2n}^d$ such that $f = \lim_{n \to \infty} h_{2n}$ uniformly on ∂K
- (ii) f = 0 on Z(K).

What happens with homogeneous polynomial approximation on non convex 0-symmetric convex bodies $K \subset \mathbb{R}^d$?

It turns out that for every 0-symmetric star like domain K in \mathbb{R}^d there exists an exceptional 0-symmetric set $Z(K) \subset \partial K$ so that for any even $f \in C(\partial K)$ the following statements are equivalent

- (i) there exist $h_{2n} \in H_{2n}^d$ such that $f = \lim_{n \to \infty} h_{2n}$ uniformly on ∂K
- (ii) f = 0 on Z(K).

Example. Consider the l_{α} ball

$$B_{\alpha} := \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}|_{\alpha} = |x_1|^{\alpha} + \dots + |x_d|^{\alpha} \le 1 \}.$$

When $0 < \alpha < 1$ this set is not convex. In this case the exceptional zero set is the intersection of ∂B_{α} with the union of coordinate planes

$$Z(B_{\alpha}) = \{ \mathbf{x} = (x_1, ..., x_d) : |x_1|^{\alpha} + ... + |x_d|^{\alpha} = 1, \ x_1 \cdot ... \cdot x_d = 0 \}.$$

Hence uniform approximation by homogeneous polynomials on $\partial(B_{\alpha})$, $0 < \alpha < 1$ is possible if and only if f vanishes on $Z(B_{\alpha})$ (Kroó-Totik (2018), d = 2, Kroó(2019), d > 2, α and is rational).

4. Density of multivariate weighted polynomials $w^{\gamma_n}p_n$

In case of approximation by weighted polynomials $w^n p_n$, deg $p_n \leq n$, we either can ensure density only on part of the domain (Freud weights, incomplete polynomials), or we need to assume the growth condition $w(x) \sim \frac{1}{|x|}$ at infinity. But what happens if w^n is replaced by w^{γ_n} with $\gamma_n = o(n)$? Then this growth restriction is not needed, in general.

Question: Are weighted polynomials $w^{\gamma_n}p_n$, deg $p_n \leq n$ dense in C(K)?

4. Density of multivariate weighted polynomials $w^{\gamma_n}p_n$

In case of approximation by weighted polynomials $w^n p_n$, deg $p_n \leq n$, we either can ensure density only on part of the domain (Freud weights, incomplete polynomials), or we need to assume the growth condition $w(x) \sim \frac{1}{|x|}$ at infinity. But what happens if w^n is replaced by w^{γ_n} with $\gamma_n = o(n)$? Then this growth restriction is not needed, in general.

Question: Are weighted polynomials $w^{\gamma_n}p_n$, deg $p_n \leq n$ dense in C(K)?

Given a a closed subset $K \subset \mathbb{R}^d$ and a nonnegative weight $w \in C(K)$ we want to approximate $f \in C(K)$ by weighted polynomials $w^{\gamma_n}p_n, p_n \in P_n^d, \gamma_n = o(n)$. When $\infty \in K$, in order for the inclusion $w^{\gamma_n}P_n^d \subset C(K)$ to hold for each n, we will need that $|\mathbf{x}|^k w(\mathbf{x}) \to 0, |\mathbf{x}| \to \infty, \forall k > 0$. This problem is nontrivial only if the zero set of the weight $Z_w := \{\mathbf{x} \in K : w(\mathbf{x}) = 0\}$ is not empty. But any uniform limit of $w^{\gamma_n}p_n$ must vanish on Z_w , i.e., we always have the inclusion $\lim_{n\to\infty} w^{\gamma_n}P_n^d \subset \{f \in C(K) : f = 0 \text{ on } Z_w\}$.

When do we have the equality

$$\lim_{n \to \infty} w^{\gamma_n} P_n^d = \{ f \in C(K) : f = 0 \text{ on } Z_w \} ?$$

First we answer above question for weights with polynomial singularities and bounded sets K. Let us denote by J[a, b] the class of all weights w on [a, b] with finite polynomial singularities which can be written in the form

$$w(x) = w_0(x) \prod_{1 \le j \le s} |x - a_j|^{\alpha_j}$$

with some $s \in \mathbb{N}$, $a \leq a_1 < \cdots < a_s \leq b$, $\alpha_j > 0$, and w_0 which is positive and analytic in an open neighborhood of [a, b]. Note that $s \in \mathbb{N}$, analytic functions w_0 , singularities a_j and their multiplicities α_j may vary for different $w \in J[a, b]$. For any $q \in C(K)$ we denote by $\Omega_q := [\min_{\mathbf{x} \in K} q(\mathbf{x}), \max_{\mathbf{x} \in K} q(\mathbf{x})]$ the range of q.

First we answer above question for weights with *polynomial singularities* and bounded sets K. Let us denote by J[a, b] the class of all weights w on [a, b] with finite polynomial singularities which can be written in the form

$$w(x) = w_0(x) \prod_{1 \le j \le s} |x - a_j|^{\alpha_j}$$

with some $s \in \mathbb{N}$, $a \leq a_1 < \cdots < a_s \leq b, \alpha_j > 0$, and w_0 which is positive and analytic in an open neighborhood of [a, b]. Note that $s \in \mathbb{N}$, analytic functions w_0 , singularities a_j and their multiplicities α_j may vary for different $w \in J[a, b]$. For any $q \in C(K)$ we denote by $\Omega_q := [\min_{\mathbf{x} \in K} q(\mathbf{x}), \max_{\mathbf{x} \in K} q(\mathbf{x})]$ the range of q.

Theorem. (A.Kroó, J. Szabados, 2019) Let $K \subset \mathbb{R}^d$, $d \geq 1$ be a closed bounded set. For any polynomial $q \in P^d$ and any weight $w^* \in J(\Omega_q)$ consider the multivariate weight $w(\mathbf{x}) := w^*(q(\mathbf{x})), \mathbf{x} \in \mathbb{R}^d$. Then

$$\lim_{n \to \infty} w^{\gamma_n} P_n^d = \{ f \in C(K) : f = 0 \text{ on } Z_w \}$$

if and only if $\gamma_n = o(n)$.

Thus when $\gamma_n = o(n)$, approximation by weighted polynomials holds for a wide class of multivariate Jacobi type weights on all of the underlying domain with the necessary exception of the zero set of the weight.

A similar result can be verified for approximation by Freud type weights when the n-th power of the weight is replaced by $\gamma_n = o(n)$. Given a multivariate polynomial $q \in P^d, d \geq 1$ and $\alpha \geq 1$ consider weighted polynomials of the form

$$e^{-\gamma_n|q(\mathbf{x})|^{\alpha}}p_n(\mathbf{x}), p_n \in P_n^d.$$

Naturally, when $d \geq 2$ in order for $e^{-\gamma_n|q(\mathbf{x})|^{\alpha}}p_n(\mathbf{x})$ to be bounded on \mathbb{R}^d we need to assume that $\frac{|q(\mathbf{x})|}{\log |\mathbf{x}|} \to \infty$, $|\mathbf{x}| \to \infty$. In fact under this assumption the weighted polynomials tend to zero at infinity and hence only $f \in C(\mathbb{R}^d)$, $f(\infty) = 0$ can be approximated.

A similar result can be verified for approximation by Freud type weights when the n-th power of the weight is replaced by $\gamma_n = o(n)$. Given a multivariate polynomial $q \in P^d$, $d \ge 1$ and $\alpha \ge 1$ consider weighted polynomials of the form

$$e^{-\gamma_n|q(\mathbf{x})|^{\alpha}}p_n(\mathbf{x}), p_n \in P_n^d.$$

Naturally, when $d \geq 2$ in order for $e^{-\gamma_n|q(\mathbf{x})|^{\alpha}}p_n(\mathbf{x})$ to be bounded on \mathbb{R}^d we need to assume that $\frac{|q(\mathbf{x})|}{\log |\mathbf{x}|} \to \infty$, $|\mathbf{x}| \to \infty$. In fact under this assumption the weighted polynomials tend to zero at infinity and hence only $f \in C(\mathbb{R}^d)$, $f(\infty) = 0$ can be approximated.

Theorem. (A.Kroó, J. Szabados, 2019) Let $\gamma_n \uparrow \infty$ be a sequence of real numbers increasing to infinity, and $\alpha \geq 1$. Then for any polynomial q as above we have

$$\lim_{n \to \infty} e^{-\gamma_n |q(\mathbf{x})|^{\alpha}} P_n^d = \{ f \in C(\mathbb{R}^d), f(\infty) = 0 \}$$

if and only if $\gamma_n = o(n)$.

- [1] D. Benko and A. Kroó, A Weierstrass-type theorem for homogeneous polynomials, Trans. Amer. Math. Soc., 361(2009), 1645–1665.
- [2] A. Kroó and J. Szabados, On the density of homogeneous polynomials on regular convex surfaces, Acta Sci. Math., 75(2009), 143–159.
- [3] A. Kroó, Density of multivariate homogeneous polynomials on star like domains, J. Math. Anal. Appl., 469(2019), 239-251.
- [4] A. Kroó and V. Totik, Density of bivariate homogeneous polynomials on non-convex curves, Proc. Amer. Math. Soc., 147(2019), 167–177.
- [5] A. Kroó, Weierstrass type approximation by weighted polynomials in \mathbb{R}^d , J. Approx. Th., 246(2019), 85-101.
- [6] A. Kroó and J. Szabados, On the density of multivariate polynomials with varying weights, submitted.
- [7] V. Totik, Weighted approximation with varying weights, Lecture Notes in Mathematics, 1569, Springer-Verlag, Berlin-Heidelberg, 1994.
- [8] V. Totik, Approximation by homogeneous polynomials, J. Approx. Th., 174 (2013), 192–205.
- [9] P. Varjú, Approximation by homogeneous polynomials, Constr. Approx., 26,(2007), 317–337.