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Let P be an algebraic polynomial of degree n.

Definition 1
We say that w is a vertex of the curve P(ew), 0 < ¢ < 2, if there
exist distinct points z; and z3 on the unit circle |z| = 1 such that

p(z1) = p(z2) = w.
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In 1961, C.J. Titus formulated the following!

With certain exceptions the curve P(e’¥) has at most (n — 1)? vertices.

P(z) =2°+0.22

1C.J. Titus, The combinatorial topology of analytic functions on the boundary of
a disk, Acta Math. 106 (1961),45-64.
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In 1973, J. R. Quine confirmed the conjecture by proving the following?

If P is a polynomial of degree n and not of the form G(z"), where

G is a polynomial and m is an integer , m > 1, then the curve P(ew),
0 < ¢ < 2, has at most (n — 1)? vertices. Furthermore this bound is
sharp, i.e. for any integer n > 1 we can find a polynomial P of degree
n such that P(e??) has exactly (n — 1)? vertices.

2J.R. Quine. On the self-intersections of the image of the unit circle under a
polynomial mapping, Proc. Amer. Math. Soc.39(1973), 135-140.
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We consider a Laurent polynomial

p(Z) = Z akzk7 z€C \ {0}’
k=m
where m,n € Z, a,, # 0, and a, # 0.

As above, we are interested in the self-intersections of the closed
parametric curve p(T) = {p(e?): 0 < § < 27}.3

Remark. Replacing ¢ by —¢, we make sure that n > |m|. Also, since
the constant term does not affect on self-intercections, we may assume
m # 0.

35 Kalmykov, L.V. Kovalev. Self-intersections of Laurent polynomials and the
density of Jordan curves. Proc. Amer. Math. Soc. (accepted).
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Self-intersection of p on T is a two-point subset {z1, 29} C T where
z1 # z2 and p(z1) = p(z2).

| \

Example

The image of T under p(z) = 22 + 2~! passes through 0 three times,
which counts as three self-intersections, namely {e™/3, —1},
{efTri/Z}, _1}, and {eﬂ'i/S’e*ﬂ'i/:S}-

Remark. To motivate this way of counting, observe that the image of
T under a perturbed function 22 4+ cz~! with ¢ close to 1 has three
distinct self-intersections near 0.

Sergei Kalmykov (based on joint work with L.V. Kovalev) On self-intersections of Laurent polynomials



-1.0 -0.5 0.5 1.0 1.5 .0

L(z) =22 +1/z

Sergei Kalmykov (based on joint work with L.V. Kovale intersections of Laurent polynomi



Theorem (K.-Kovalev)

If —m < m < n and m # 0, the number of self-intersections of the
Laurent polynomial p on T is at most

(n—l)(n—mg'l), 1<m<n

(n—1)(n—m), —n<m<—1

(n—1)(2n —1), m=—-n
with the following exceptions: (a) p can be written as ¢(z7) for some
Laurent polynomial ¢ and some integer j # —1,1; (b) n = —m and
|an| = |am|-
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Remark. If p = q(27) with j # —1,1, the polynomial p traces a closed
curve more than once, thus creating uncountably many
self-intersections. If n = —m and |a,| = |am|, the number of
self-intersections may also be infinite: consider p(z) = q(z + 1/2)
where ¢ is an algebraic polynomial of degree n. This polynomial has
self-intersections p(z) = p(1/z), for all z € T\ {1, 1}.
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Let U,, n € N, be the Chebyshev polynomial of the second kind of
degree n.

Recall that
sin((n +1)6)

sin 6

Up(cosf) =

By convention, U_1 =0and U_,,_1 = —U,_1 for n € N.
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Consider a Laurent polynomial with —n < m <n, m # 0, a, # 0, and

am # 0. Let
z) = Z arUp—1(t)2F™,
k=m

g (t,z) = g(t, l/z Z apUk—1(t)2"".
Then, with ¢ = cos ¢, we have

- mp(€%2) — plee2)
el — =iy '

g(ta Z) =

Also, g is a polynomial in ¢, z of total degree 2n — m — 1, and g* is a
polynomial in ¢, z of total degree n — m + |m| — 1. Finally, if g and g*
are considered as elements of C[t][z], their resultant is a polynomial of
degree 2(n — 1)(n —m) in t.
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anUn—l te amUm—l

U._ e U.. _
reS(g, g*) = det aU, . an. n ! U, 1 Amm=1
WUm—l to @Un—l
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Let p, g,g" be as in the previous lemma. Given a self-intersection of
plT, write it in the form {e'?z,e *?2} where z € T and
e?eT\{-1,1}. Let t = cosp. Then

g(t, Z) = g*(tv Z) = g(_tv _Z) = g*(_t? _z) =0,

i.e., the algebraic curves g = 0 and ¢g* = 0 intersect at the points (t, 2)
and (—t,—z). Different self-intersections correspond to different pairs

{(t7 Z)7 (_tv _Z)}
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We begin with the case n = —m. For z € T the Laurent polynomial p
agrees with the harmonic polynomial

n

pr(2) = (2" + a_x2").

k=1

Let ¢)(w) = w + cw, where ¢ = —a_, /@,. Then,
¢ = (¢ = ¢0)/(1 — |c|?). We have

n

Yopp(z) = Z((ak +ca )" + (a_y, + cay)z"),
k=1

where the coefficient of z™ vanishes by the choice of ¢. Returning to
the Laurent polynomial form, we have for z € T,

n n—1
pop(z) =Y (ar+cap)z" + ) (a_g+ car)z".
k=1 k=1
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If ¢ o pj7 depends only on 27 for some j € Z\ {—1,1}, then by
applying the inverse transformation 1)~ we conclude that the original
polynomial p had the same property, i.e., exceptional case (a) holds.
Apart from this exceptional case, we can apply Theorem to ¥ o p, with
m > —n. The bound is largest when m = 1 — n, when it is equal to
(n —1)(2n —1). This completes the case n = —m.

From now on, —n < m < n. g and g* are relatively prime in C[t, z].
By Bezout's theorem they have at most deg g deg g* common zeros.
By Lemma 2, the number of self-intersections of pjy is at most
%degg deg g*. This proves the case m > 1.
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The case m < —1 requires additional consideration of the intersection
between g = 0 and ¢g* = 0 at infinity.

To do this we can write the polynomials g and ¢g* in terms of
homogeneous coordinates (¢, z, w) as follows:

G(t, z,w) = w" ™ g(t/w, z/w) = Z apUp_1 (t/w) M=kl
k=m
and
G*(t, z,w) = w2 g (¢ Jw, 2 Jw) = Z apUp_1 (t/w) 2" Fph=2m=1,
k=m

So, we have

(2n—m—1)(n—2m—1)—2m(m—n)—(n—1)(—=m—1) = 2(n—1)(n—m).
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Proposition (K.-Kovalev)

Suppose n,m € Z, n > —m > 1, and ged(n, m) = 1. Then for
sufficiently small € > 0 the Laurent polynomial p(z) = 2™ 4 €z™ has
(n — 1)(n —m) self-intersections on T.

sin 6

sinng ,_.. ] sinmf ,,
sin m@

gt 2) = Up 1 ()2 + U1 ()2 = (

where t = cos 6.
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Note that U,,_1 and U,,—1 have no common zeros because

ged(n,m) = 1. Therefore, any solution of g(t,z) = 0 with |z| =1 and
0 <t <1 arises from

sinnf

™
+ 0<b< —.
€, 5

(1)

The zeros of the left-hand side of (1) on [0, 7/2] are 7k /n for

1 <k < |n/2]. It follows that for small enough ¢, (1) holds at n — 1
points of (0,7/2). Indeed, there are two such points near wk/n with
1 <k < |n/2], and one such point next to 7/2 (only if n is even).
This adds up to 2(n/2 — 1) +1 =n — 1 when n is even, and
2(n—1)/2 =n— 1 when n is odd.

sin m@
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nt polynomials



Let £(T;C) be the set of all circle embeddings, i.e., continuous
injective maps of T into C. It is well known that continuous maps are
dense in LP(T;C) for 1 < p < 0.

Theorem (K.-Kovalev)

For p € [1,00), every function f € LP(T;C) can be approximated in
the LP norm by orientation-preserving C'>°-smooth embeddings of T
into C.
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Note that the real-variable analog of this result is false: continuous
injective maps f : [0, 1] — R are not dense in LP([0,1]) for any p, as
their closure is the set of monotone functions.

Also, £(T;C) is not dense in the space of continuous maps C°(T, C)
with the uniform norm, e.g., a continuous map of T onto a “figure
eight” curve cannot be uniformly approximated by injective maps.
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The Fourier coefficients of an integrable function f : T — C are given

by
1 27

fn =5 [ pemean,

The previous theorem and Parseval's theorem imply the following
result.

For any sequence c € ¢2(7Z) and any € > 0 there exists an
oriantation-preserving circle embedding f : T — C such that
le—Fll2 <e.
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Thank you for your attention!
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