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Let P be an algebraic polynomial of degree n.

Definition 1

We say that w is a vertex of the curve P (eiϕ), 0 ≤ ϕ ≤ 2π, if there
exist distinct points z1 and z2 on the unit circle |z| = 1 such that
p(z1) = p(z2) = w.
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P (z) = z3 − 2z2 − 3z
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In 1961, C.J. Titus formulated the following1

Conjecture

With certain exceptions the curve P (eiϕ) has at most (n− 1)2 vertices.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

P (z) = z5 + 0.2z
1C.J. Titus, The combinatorial topology of analytic functions on the boundary of

a disk, Acta Math. 106 (1961),45–64.
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In 1973, J. R. Quine confirmed the conjecture by proving the following2

Theorem

If P is a polynomial of degree n and not of the form G(zm), where
G is a polynomial and m is an integer , m > 1, then the curve P (eiϕ),
0 ≤ ϕ ≤ 2π, has at most (n− 1)2 vertices. Furthermore this bound is
sharp, i.e. for any integer n > 1 we can find a polynomial P of degree
n such that P (eiϕ) has exactly (n− 1)2 vertices.

2J.R. Quine. On the self-intersections of the image of the unit circle under a
polynomial mapping, Proc. Amer. Math. Soc.39(1973), 135–140.
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We consider a Laurent polynomial

p(z) =

n∑
k=m

akz
k, z ∈ C \ {0},

where m,n ∈ Z, am 6= 0, and an 6= 0.

As above, we are interested in the self-intersections of the closed
parametric curve p(T) = {p(eiθ) : 0 ≤ θ ≤ 2π}.3

Remark. Replacing ϕ by −ϕ, we make sure that n ≥ |m|. Also, since
the constant term does not affect on self-intercections, we may assume
m 6= 0.

3S.Kalmykov, L.V. Kovalev. Self-intersections of Laurent polynomials and the
density of Jordan curves. Proc. Amer. Math. Soc. (accepted).
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Definition 1’

Self-intersection of p on T is a two-point subset {z1, z2} ⊂ T where
z1 6= z2 and p(z1) = p(z2).

Example

The image of T under p(z) = z2 + z−1 passes through 0 three times,
which counts as three self-intersections, namely {eπi/3,−1},
{e−πi/3,−1}, and {eπi/3, e−πi/3}.

Remark. To motivate this way of counting, observe that the image of
T under a perturbed function z2 + cz−1 with c close to 1 has three
distinct self-intersections near 0.
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L(z) = z2 + 1/z
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L(z) = z2 + 0.9/z
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Theorem (K.-Kovalev)

If −n ≤ m < n and m 6= 0, the number of self-intersections of the
Laurent polynomial p on T is at most

(n− 1)
(
n− m+1

2

)
, 1 ≤ m < n

(n− 1)(n−m), −n < m ≤ −1

(n− 1)(2n− 1), m = −n

with the following exceptions: (a) p can be written as q(zj) for some
Laurent polynomial q and some integer j 6= −1, 1; (b) n = −m and
|an| = |am|.
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Remark. If p = q(zj) with j 6= −1, 1, the polynomial p traces a closed
curve more than once, thus creating uncountably many
self-intersections. If n = −m and |an| = |am|, the number of
self-intersections may also be infinite: consider p(z) = q(z + 1/z)
where q is an algebraic polynomial of degree n. This polynomial has
self-intersections p(z) = p(1/z), for all z ∈ T \ {−1, 1}.
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Let Un, n ∈ N, be the Chebyshev polynomial of the second kind of
degree n.

Recall that

Un(cos θ) =
sin((n+ 1)θ)

sin θ
.

By convention, U−1 ≡ 0 and U−n−1 = −Un−1 for n ∈ N.

Sergei Kalmykov (based on joint work with L.V. Kovalev) On self-intersections of Laurent polynomials



Lemma 1

Consider a Laurent polynomial with −n < m < n, m 6= 0, an 6= 0, and
am 6= 0. Let

g(t, z) =

n∑
k=m

akUk−1(t)z
k−m,

g∗(t, z) = zn−mg(t, 1/z) =

n∑
k=m

akUk−1(t)z
n−k.

Then, with t = cosϕ, we have

g(t, z) = z−m
p(eiϕz)− p(e−iϕz)

eiϕ − e−iϕ
.

Also, g is a polynomial in t, z of total degree 2n−m− 1, and g∗ is a
polynomial in t, z of total degree n−m+ |m| − 1. Finally, if g and g∗

are considered as elements of C[t][z], their resultant is a polynomial of
degree 2(n− 1)(n−m) in t.
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res(g, g∗) = det



anUn−1 · · · amUm−1
. . .

. . .

anUn−1 · · · amUm−1
amUm−1 · · · anUn−1

. . .
. . .

amUm−1 · · · anUn−1


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Lemma 2

Let p, g, g∗ be as in the previous lemma. Given a self-intersection of
p|T, write it in the form {eiϕz, e−iϕz} where z ∈ T and
eiϕ ∈ T \ {−1, 1}. Let t = cosϕ. Then

g(t, z) = g∗(t, z) = g(−t,−z) = g∗(−t,−z) = 0,

i.e., the algebraic curves g = 0 and g∗ = 0 intersect at the points (t, z)
and (−t,−z). Different self-intersections correspond to different pairs
{(t, z), (−t,−z)}.
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We begin with the case n = −m. For z ∈ T the Laurent polynomial p
agrees with the harmonic polynomial

ph(z) =

n∑
k=1

(akz
k + a−kz̄

k).

Let ψ(w) = w + cw, where c = −a−n/an. Then,
ψ−1(ζ) = (ζ − cζ)/(1− |c|2). We have

ψ ◦ ph(z) =

n∑
k=1

((ak + ca−k)z
k + (a−k + cak)z̄

k),

where the coefficient of z̄n vanishes by the choice of c. Returning to
the Laurent polynomial form, we have for z ∈ T,

ψ ◦ p(z) =

n∑
k=1

(ak + ca−k)z
k +

n−1∑
k=1

(a−k + cak)z
−k.
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If ψ ◦ p|T depends only on zj for some j ∈ Z \ {−1, 1}, then by
applying the inverse transformation ψ−1 we conclude that the original
polynomial p had the same property, i.e., exceptional case (a) holds.
Apart from this exceptional case, we can apply Theorem to ψ ◦ p, with
m > −n. The bound is largest when m = 1− n, when it is equal to
(n− 1)(2n− 1). This completes the case n = −m.

From now on, −n < m < n. g and g∗ are relatively prime in C[t, z].
By Bezout’s theorem they have at most deg g deg g∗ common zeros.
By Lemma 2, the number of self-intersections of p|T is at most
1
2 deg g deg g∗. This proves the case m ≥ 1.

Sergei Kalmykov (based on joint work with L.V. Kovalev) On self-intersections of Laurent polynomials



The case m ≤ −1 requires additional consideration of the intersection
between g = 0 and g∗ = 0 at infinity.

To do this we can write the polynomials g and g∗ in terms of
homogeneous coordinates (t, z, w) as follows:

G(t, z, w) = w2n−m−1g(t/w, z/w) =

n∑
k=m

akUk−1(t/w)zk−mw2n−k−1

and

G∗(t, z, w) = wn−2m−1g∗(t/w, z/w) =

n∑
k=m

akUk−1(t/w)zn−kwk−2m−1.

So, we have

(2n−m−1)(n−2m−1)−2m(m−n)−(n−1)(−m−1) = 2(n−1)(n−m).
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Proposition (K.-Kovalev)

Suppose n,m ∈ Z, n > −m ≥ 1, and gcd(n,m) = 1. Then for
sufficiently small ε > 0 the Laurent polynomial p(z) = zn + εzm has
(n− 1)(n−m) self-intersections on T.

g(t, z) = Un−1(t)z
n + εUm−1(t)z

m =

(
sinnθ

sinmθ
zn−m + ε

)
sinmθ

sin θ
zm

where t = cos θ.
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n = 11, m = −2
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Note that Un−1 and Um−1 have no common zeros because
gcd(n,m) = 1. Therefore, any solution of g(t, z) = 0 with |z| = 1 and
0 < t < 1 arises from

(1)
sinnθ

sinmθ
= ±ε, 0 < θ <

π

2
.

The zeros of the left-hand side of (1) on [0, π/2] are πk/n for
1 ≤ k ≤ bn/2c. It follows that for small enough ε, (1) holds at n− 1
points of (0, π/2). Indeed, there are two such points near πk/n with
1 ≤ k < bn/2c, and one such point next to π/2 (only if n is even).
This adds up to 2(n/2− 1) + 1 = n− 1 when n is even, and
2(n− 1)/2 = n− 1 when n is odd.
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L(z) = z11 + 0.5/z2, ] = 130
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Let E(T;C) be the set of all circle embeddings, i.e., continuous
injective maps of T into C. It is well known that continuous maps are
dense in Lp(T;C) for 1 ≤ p <∞.

Theorem (K.-Kovalev)

For p ∈ [1,∞), every function f ∈ Lp(T;C) can be approximated in
the Lp norm by orientation-preserving C∞-smooth embeddings of T
into C.
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Note that the real-variable analog of this result is false: continuous
injective maps f : [0, 1]→ R are not dense in Lp([0, 1]) for any p, as
their closure is the set of monotone functions.

Also, E(T;C) is not dense in the space of continuous maps C0(T,C)
with the uniform norm, e.g., a continuous map of T onto a “figure
eight” curve cannot be uniformly approximated by injective maps.
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The Fourier coefficients of an integrable function f : T→ C are given
by

f̂(n) =
1

2π

∫ 2π

0
f(eiθ)e−inθdθ.

The previous theorem and Parseval’s theorem imply the following
result.

Corollary

For any sequence c ∈ `2(Z) and any ε > 0 there exists an
oriantation-preserving circle embedding f : T→ C such that
‖c− f̂‖2 < ε.
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Thank you for your attention!
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