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Introduction

◆ ◆ Evolution equation theoryEvolution equation theory (infinite dimensional)
→ Evolution operator: bounded 
→ infinitesimal generator: unbounded → Hille-YosidaHille-Yosida
           

◆◆Lie theory or Banach algebraLie theory or Banach algebra (finite/infinite dimensional)
→ Evolution operator (Lie group):  bounded
→ infinitesimal generator (Lie algebra): (un)bounded
          → Power series (Campbell-Baker-Hausdorff)Power series (Campbell-Baker-Hausdorff)

etA  = S (tA)n/n! We want to define convergent power series
for unbounded generator A   e.g., Schroedinger operator
 



  

Abstract Cauchy problem
of hyperbolic type

t-dependent non-autonomous problem

X: Banach space  (= abstract space)

A(t): infinitesimal generator of U(t,s)  ∈ X

(*)

In most of standard theory of evolution equations, 
Time evolution is represented by the exponential function of operators

　　→ Represent the generator by logarithm function of operator 

T. Kato (1970, 1973)

t-dependent

Point of argument

PDEs can be modeled by “ODEs in infinite-dimensional Banach space X “

generator of group 



  

Logarithm as an 
infinitesimal generator

v(t) = U(t) u0

: unknown function 

“Definition of log”   is equivalent to “Definition of generator” to some extents

We would start with defining logs



  

Research history of 
logarithm of operators

1943      N. Dunford … theory of function of operators

1953      A. E. Taylor … generalization of Dunford theory

1969      V. Nollau  … initiation of log of operators

1990's    Revival of log in terms of “fractional power”

              K. N. Boyadzhiev

2000's        N. Okazawa 
              M. Hasse,
              C. Martinez and M. Sanz        and so on 
                                     
These researches are based on the sectorial operator framework.
Here we do not use the sectorial operator framework.

Re

Im

Spectral set 
of sectrial operator



  

Define U(t,s); t,s [∈ -T,T] satisfying semigroup property

Furthermore the inverse is defined as

As a result U(t,s) is C
0
-group for [-T,T] 

In particular U(t,s)  is bounded on X

t,s [∈ -T,T]

Definition of U(t,s) Evolution operatorEvolution operator

Continuous groupContinuous group

… … associated withassociated with
Hyperbolic type PDEHyperbolic type PDE



  

|Z| = |z|,    −π < arg Z ≤ π

Dunford-Riesz 
integral

Principal branch of logarithm

i

Logarithm of operator

Draw Γ within the resolvent set of U(t,s)＋ C 

Re

Im
Spectral set of 
U(t,s)

Re

Im
Spectral set of
U(t,s)+C

ΓΓ

Treatment for non-sectorial operator



  

Y is a densely defined subspace of X

Derivative of logarithm 
Define  A(t): Y → X  as

Here we consider weak limit
(generalized compared to the standard theory)

Remarkable points in defining the logarithm of A(t) ：

　　◆ The origin is the singular point of log 

　　◆ log is the multi-valued function



  

Theorem -log representation -

Note:  (10) can be valid for some cases with C=0.

  Here we consider more general cases:
　 (10) is valid for C≠0. 
   In this settings, all the U(t,s) defined in the preceding sheet is under control. 

Re

ImSpectral set of U(t,s) Γ

as the previous sheet.

YI, Methods Funct.Anal.Topology 2017



  

３３ steps of the proofsteps of the proof
Proof 1Proof 1stst stage stage 　→　　→　 Proof 2Proof 2ndnd stage stage 　→　　→　 Proof 3Proof 3rdrd stage stage
uniformly boundeduniformly bounded 　　　　　　　　　　　　 Commutation,               Complex calculiCommutation,               Complex calculi
                                                          exchange of integral and limitexchange of integral and limit 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　
　　

↓ integrated is evaluated in the 1st step

in order to relate this eq. 
with logarithm ...

Outline of the proof



  

:= ∂
t
 a(t,s)

u  ∈ Y

Re

Im
Spectrum of A(t)

Re

Im

Re

Spectrum of a(t,s) +p

-p

Application to 
evolution equations

YI, Methods Funct.Anal.Topology 2017



  

Autonomous caseAutonomous case

Non-autonomous caseNon-autonomous case

du(t) / dt = A(t)

du(t) / dt = A(t) + f(t)

Computational advantage is clear Computational advantage is clear 

     Similar to
Maximal regularity
          for 
Hyperbolic type

YI, Methods Funct.Anal.Topology 2017



  

Connection to Banach algebra

U(t,s) = ea(t,s) - CI 

[ORIGINAL][ORIGINAL]
Generated by 
unboundedunbounded operator operator 
in infiniteinfinite dimensional space dimensional space

[NEWLY Defined]
Generated by 
boundedbounded operator 
in infiniteinfinite dimensional space

Alternative representation for evolution operatorAlternative representation for evolution operator

Semigroup property: YES
Semigroup property: NO

eta(t,s)  = S (a(t,s))n/n! 
U(t,s) = lim AI

l
 

l  0→
 

Generally,
No concrete information

GroupGroup Semigroup property 

YI, Adv. Math. Phys. 2019  (to appear, invited)YI, Adv. Math. Phys. 2019  (to appear, invited)

B(X)-module



  

U(t,s) = ea(t,s) - CI 

[ORIGINAL][ORIGINAL]
Generated by 
unboundedunbounded operator operator 
in infiniteinfinite dimensional space dimensional space

[NEWLY Defined]
Generated by 
boundedbounded operator 
in infiniteinfinite dimensional space

Alternative representation for evolution operatorAlternative representation for evolution operator

GroupGroup Semigroup property 

More importantly ...More importantly ...
= S (a(t,s))n/n! - CI 
= S (a(t,s) – d

n,1
 CI)n/n!

U(t,s) = ea(t,s) - CI 

n

n

leading to the basis for the Lie group & Lie algebraleading to the basis for the Lie group & Lie algebra
(Baker-Hausdorff type formula) (Baker-Hausdorff type formula) 

Connection to Banach algebra

YI, Adv. Math. Phys. 2019  (to appear, invited)YI, Adv. Math. Phys. 2019  (to appear, invited)



  

Relation to Cole-Hopf transform

A solution of Heat equation: u(t,x) = A(t) u
0

Heat eq. (linear)

“similar” by assuming C=0

→ space-time replacement

Cole-Hopf transformCole-Hopf transform
Burgers eq (nonlinear)

YI, Methods Funct.Anal.Topology 2019



  

Relation to Cole-Hopf transform

A solution of Heat equation: u(t,x) = A(t) u
0

diagonalization

YI, Methods Funct.Anal.Topology 2019



  

● Logarithmic representation of C0-group is obtained; 
bounded part of generator is extracted

● [Increased regularity] alternative regularity of hyperbolic 
type (interface on the maximal regularity)

● [Algebraic B(X)-module] foundation to Lie algebra 
● [Nonlinearity] connection to the Cole-Hopf transform.

:= a(t,s)

SummarySummary
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