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Introduction

We want to define convergent power series ¢4 = ¥, (tA)"/n!
for unbounded generatorA e.g., Schroedinger operator

¢ Evolution equation theory (infinite dimensional)
— Evolution operator: bounded
— infinitesimal generator: unbounded — Hille-Yosida

¢ Lie theory or Banach algebra (finite/infinite dimensional)
— Evolution operator (Lie group): bounded
— infinitesimal generator (Lie algebra): (un)bounded

— Power series (Campbell-Baker-Hausdorff)



Abstract Cauchy proble

of hyperbolic type

t-dependent non-autonomous problem T Kato (1970, 1973)
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W) _ Atyu(t) + f(r), 0<t<T.
dt *_
u(O) =ug € X t-dependent

X: Banach space (= abstract space)

A(1): infinitesimal generator of U(t,s) € X 9enerator of group

PDEs can be modeled by “ODEs in infinite-dimensional Banach space X “

Point of argument

In most of standard theory of evolution equations,
Time evolution is represented by the exponential function of operators

— Represent the generator by logarithm function of operator




Logarithm as an
infinitesimal generator

v(t) = U(¥) u,
- unknown function

O Logv = v'v™}

!

dv/dt = |0;Logv|v

“Definition of log” is equivalent to “Definition of generator” to some extents

We would start with defining logs



Research history of
logarithm of operators

1943 N. Dunford --- theory of function of operators

1953 A. E. Taylor --- generalization of Dunford theory

:1969 V. Nollau --- initiation of log of operators :
i A Im i
:1990'5 Revival of log in terms of “fractional power” :
| = |
: K. N. Boyadzhiev ifpié’éi‘;‘i';itprrator y .
| |
:2000'5 N. Okazawa :
. M. Hasse, i
l C. Martinez and M. Sanz and so on :

These researches are based on the sectorial operator framework.
Here we do not use the sectorial operator framework.



el
Definition of U(t,s) Evolution operator

Define U(ts); t,s €[-1,T] satisfying semigroup property
Ut,r) U(r,s) =U(t,s)
U(s,s) =1

Furthermore the inverse i1s defined as

U(s,t) U(t,s) =U(s,s) =1

-+ associated with
Hyperbolic type PDE

As a result U(t,s) is C —group for [-T,T]

In particular U(ts) is bounded on X
Continuous group

\U(t, s)llpx) < Me”

t,s €[-T,7T]




Logarithm of operator |™eese

Principal branch of logarithm

Logz = log |z| +iarg Z

Z| =1z, —wm<arg/Z<m

Y SR |
O¢Logv = v'v
Treatment for nGuesectorial operator

Log(U(t,s) + CI) = bLog)\ (A= Ul(t, 8)@)_1d)\

Draw I" within the resolvent set of Ults) + C

Im
Spectral set of Spectral set of

U(t,s) U(t,s)+C




e
Derivative of logarithm

Define A(?): Y — X as

C A = wlim A YUt + h,t) — Du

{ xzflirglh_l(U(tJr h,s)—U(t,s)) u= xXliIglh_l(U(tJr h,t)—1) U(t,s) u

Here we consider weak limit
(generalized compared to the standard theory)

Yis a densely defined subspace of X

Remarkable points in defining the logarithm of A(t) :

& The origin is the singular point of log

¢ |og is the multi-valued function




e
Theorem -log representation -

Theorem 3.1. Let t and s satisfy —1 < t.,s < T, and Y be a dense subspace
of X. For U(t,s) defined in Sec. 2, let A(t) € G(X) and 0:U(t,s) be determined

as the previous sheet. If A(t) and U(t.s) commute, an evolution family

{A(t)}—T<i<T s represented by means of the logarithm function; there erists a
certain complex number C' # 0 such that

(10) A(t) u= (I +CU(s,t)) 8Log (U(t,s) + CI) u,

where u is an element in Y. Note that U(t, s) 15 assumed to be

invertible. YI, Methods Funct.Anal.Topology 2017

Spectral set of U(t,s)

Note: (10) can be valid for some cases with C=0.

Imr

Re

Here we consider more general cases:

(10) is valid for C#0.
In this settings, all the U(t,s) defined in the preceding sheet is under control.



e
Outline of the proof

A(tu = wlim h™ (Ut + D, 1) — Du | «— orier o iemte tiseq

v}sbrlirg +{Log (U(t+ h,s)+ CI) — Log (U(t,s) + CI)}

= ‘2’1_1%1 %% fF LogA

{(N=U(t+h,s)—CI)"t —(AN=Ul(t,s) — CI)"t}d\
= wlim 5 [ Log\

h—0 | integrated is evaluated in the 1° step

(A= Ut +hys) — 1) EERZU00 (11t 5) — OT) i

3 steps of the proof

Proof 1% stage — Proof 2" stage — Proof 3" stage
uniformly bounded Cormmutation, Complex calculi

exchange of integral and limit



T d
Application to U(t,s) = e?®3) — O

evolution equations
A(t) u= (I +CU(s,t)) 0 Log !U!t s) +C1) u uey

= 0 a(t,s)
Corollary 3.2. Lett and s satisfy 0 < t,s <T. ' For'U t,s) and A(t) satisfying the

assumption of Theorem 3.1, the exponential of a(t,s) is represented by a convergent
POWET SETILES:

(15) Ea(t’s) L Zoo ﬂ,{ijs}n?

il n=0 n!

with a relation e*&%) = exp(Log(U(t,s) + CI)) = U(t,s) + CI. If a(t,s) with

different t and s are further assumed to commute,
(16) 0,e®1:8)yy = Bia(t, s) e* By,

s satisfied for ug € Y, where 0y denotes a t—differential in a weak sense.

Im Im
Spectrum of A(¢) Spectrum of a(t,s) +1T

Y1, Methods Funct.Anal.Topology 2017




Similar to
Maximal regularity
_ f
Autonomous case du(t) / dt = A(t) Hyperbolic type

Theorem 4.1. Operator e™"*) is holomorphic.

Theorem 4.2. For us € X there exists a unique solution u(t) € C(|=1,T1; X) of

(19) with_a_convergent power series representation.:

(29) u(t) = UL, 8)us = (€09 — CT)u, = (zm alt5)” 01) e,

n=0 n!

where C' is a certain complex number.

- Computational advantage is clear
Non-autonomous case du(t) / dt = A(t) + (1)

Theorem 4.3. Let f € LY (=T, T; X) be locally Holder continuous on [—T,T]. For
us € X there exists a unique solution u(t) € G([—T 11; X) for (23) such that

u(t) = [0 ) Ll — Clfug + [1[00 ) 48— CT) f(r)dr

n— 0 n‘
using a certain complex number C'.

Y1, Methods Funct.Anal.Topology 2017



Connection to Banach algebra

Alternative representation for evolution operator

G rou p _____ Semigroup property
: 0 Ult,r)U(r,s)=U(t,s),
_v_a(t,s) _
(/Tv(t,S) —€__ Cl Ul(s,s)=1.
[ORIGINAL] INEWLY Defined]
Generated by Generated by
unbounded operator bounded operator
in infinite dimensional space in infinite dimensional space
\ f
l Generally, | l B(X)-module
No concrete information

Semigroup property: NO
") =3 (a(t,s))"/n!

YI, Adv. Math., Phys. 201 I, invi

Semigroup property: YES

U(t,s)=lim Al

L—-0 A



Connection to Banach algebra

Alternative representation for evolution operator
G roup Semigroup property

' Ul(t,r)U(r,s)=U(t,s),
..... Ul(s,s)=1.

[ORIGINAL] \ [INEWLY Defined]
Generated by Generated by

unbounded operator bounded operator
in infinite dimensional space in infinite dimensional space

More importantly ...
Ut,s) = e - CI = 2 (a(t,s))"/n! - CI
= Z (a(t,s)—o  CI)'/n!
leading to the basis for the Lie group ) & Lie algebra
(Baker-Hausdorftf type formula) yy, adv. Math. Ph v invi



Y1, Methods Funct.Anal.Topology 2019

Relation to Cole-Hopf transform

A(t) u= (I + CU(s, ) 0iLog (U(t,s)+ CI) u

A solution ¢

“similar” by assuming.C=0.,

— space-time replacement

Cole-Hopf transform
atw _|_ waﬂ?w — M—l/Q agw Burgers eq

‘ Ut x) = —2u~ 1?2 @;I-log u(t, )

63“ — ul/?(_a?)l/?,u == O Heat eq. (linear)

nonlinear)




YI, Methods Funct.Anal.Topology 2019

Relation to Cole-Hopf transform

A(t) u= (I + CU(s, ) 0iLog (U(t,s)+ CI) u

\ A solution ¢

(wo™) = ot —du (uwo™t)
O;Logv = v'v~
O2u — p'?0,u = 0

(1) = (o)

diagonalization j



A(t) u= (I +CU(s,t)) dLog (U(t,s) +CI) u

= a(t,s)

ea(t,s) — ZDO a(t,s)"

1—>0 n!

Logarithmic representation of C_ -group is obtained;
bounded part of generator is extracted

[Increased reqgularity] alternative regularity of hyperbolic
type (interface on the maximal regularity)

[Algebraic B(X)-module] foundation to Lie algebra

[Nonlinearity] connection to the Cole-Hopf transform.
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