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The notion of bounded variation was based by Jordan[1]. Wiener[2] considered the class of
functions BVp. Love[3] studied functional properties of this class. Young[4] intoduced the
notion of Φ-variation. Musielak and Orlicz[5] studied properties of this class. Waterman[6]
studied class of functions of bounded Λ-variation. Chanturia[7] defined notion of modulus
of variation. Kita and Yoneda[8] introduced new class of functions of bounded variation. T.
Akhobadze[9,10] generalized the last class and studied properties of it. This bibliography
can be continued.

Definition

Let f(t) be a function defined on a finite closed interval [a, b]. Suppose pn and φ(n) be
sequences such that p1 ≥ 1, pn ↑ ∞, n→∞ and φ(1) ≥ 1, φ(n) ↑ ∞, n→∞. We say
that f ∈ BV (pn ↑ ∞, φ, [a, b]) if

V (f, pn ↑ ∞, φ, [a, b]) = sup
n

sup
∆

(
m∑
i=1

|f(ti)− f(ti−1)|pn : ρ(∆) ≥
1

φ(n)

)1/pn

< +∞,

where ∆ is a = t0 < t1 < ... < tm = b partition of the interval [a, b] and
ρ(∆) = mini(ti − ti−1).
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In the case, φ(n) = 2n, class BV (pn ↑ ∞, φ, [a, b]) is considered by Kita and Yoneda [8].

Proposition

BV (pn ↑ ∞, φ) is a linear space and for each numbers α and β we have

V (αf + βg, pn ↑ ∞, φ) ≤ |α|V (f, pn ↑ ∞, φ) + |β|V (g, pn ↑ ∞, φ).

Definition

Denote by BV ∗(pn ↑ ∞, φ, [a, b]) class of functions from BV (pn ↑ ∞, φ, [a, b]) for which
f(a) = 0.

BV ∗(pn ↑ ∞, φ, [a, b]) is a normed space, with the norme

||f || = V (f, pn ↑ ∞, φ, [a, b]).
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Proposition

BV ∗(pn ↑ ∞, φ, [a, b]) is a complete space.

Proposition

BV ∗(pn ↑ ∞, φ, [a, b]) is not separable.

Proposition

If at each point t of [a, b] interval lim
k→∞

fk(t) = f(t), then

V (f, pn ↑ ∞, φ) ≤ lim inf
k→∞

V (fk, pn ↑ ∞, φ).
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Definition
A sequence of fn functions will be termed convergent in variation to f if
V (fn − f, pn ↑ ∞, φ)→ 0 for n→∞.

Proposition
Convergence in variation implies uniformly convergence, in general.
If φ(n)

1
pn is bounded then these convergences are equivalent.

If φ(n)
1

pn is not bounded then there exists uniformly convergent sequence of functions
which is not convergent in variation.
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Proposition

Let p1 ≥ 1, pn ↑ ∞ and φ(1) ≥ 1, φ(n) ↑ ∞. Then for each point x ∈ (a, b) there exists
y ∈ (x, b), and a function f defined on [a, b] such that

V (f, pn ↑ ∞, φ, [a, y]) < V (f, pn ↑ ∞, φ, [a, x]).

Remark

Let f be defined on [a, b] and [a1, b1] ⊂ [a, b]. then

V (f, pn ↑ ∞, φ, [a1, b1]) ≤ 3 · V (f, pn ↑ ∞, φ, [a, b]).

Remark

If c ∈ (a, b) then

V (f, pn ↑ ∞, φ, [a, b]) ≤ 4 · V (f, pn ↑ ∞, φ, [a, c]) + 4 · V (f, pn ↑ ∞, φ, [c, b]).
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Definition

A function f defined on a closed interval [a, b], will be termed ((pn), φ)-absolute continuous
if the following condition is satisfied: for every ε > 0 there exists a number δ > 0 such that(

m∑
i=1

|f(βi)− f(αi)|pn

)1/pn

< ε,

for all finite sets of non-overlapping intervals (αi, βi) ⊂ [a, b], i = 1, 2, ...,m, for which
βi − αi ≥ 1

φ(n) , i = 1, 2, ...,m, and(
m∑
i=1

(βi − αi)pn

)1/pn

< δ.

We denote this class by AC(pn ↑ ∞, φ, [a, b]).
It is clear that if f is ((pn), φ)-absolute continuous then f is continuous.
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Proposition

A necessary and sufficient condition for f to be in AC(pn ↑ ∞, φ, [a, b]) is that for a given
ε > 0 there exists a δ > 0 such that

V (f, pn ↑ ∞, φ, [t1, t2]) < ε,

for each [t1, t2] ⊂ [a, b] when t2 − t1 < δ.

Proposition

If f is absolute continuous (in the ordinary sence), then f ∈ AC(pn ↑ ∞, φ).

Proposition

If φ(n)
1

pn is bounded then every continuous function on [a, b] is ((pn), φ)-absolute
continuous.
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Proposition

If φ(n)
1

pn is not bounded then there exists a continuous function f which is not
((pn), φ)-absolute continuous.

Proposition

Let {fk}∞i=1 be a sequence of functions from AC(pn ↑ ∞, φ, [a, b]) which is convergent in
variation to f , then f ∈ AC(pn ↑ ∞, φ, [a, b]).

Proposition

For every q ≥ 1 there exists a function which is ((pn), φ)-absolute continuous but it is not
in Vq , where Vq is the class of functions of Wiener-Young[4] q-th generalization of total
variation.
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Definition

We say that a function f defined on [a, b] satisfies condition (∗) if it is measurable, periodic
with period b− a and if V (fh − f, pn ↑ ∞, φ, [a, b])→ 0 for h→ 0+, where
fh(t) = f(h+ t).

Proposition

If a function f is ((pn), φ)-absolute continuous on [a, b], periodic with period b− a, then f
satisfies condition (∗).

Proposition

Let a function f defined on [a, b] satisfies condition (∗). Then the sequence fk of the
Steklov functions of f , defined by the formula

fk(t) = k

∫ t+ 1
k

t

f(τ)dτ,

is convergent in variation to f(t).
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Corollary
Lef f be an integrable, periodic function. Sequence of its Steklov functions is convergent in
variation to f if and only if when f is ((pn), φ) absolute continuous.

Proposition

Let
∫ b
a
|kq(t)|dt = θq , q = 1, 2..., and (θq) is bounded; f is ((pn), φ)-absolute continuous,

periodic with period b− a and Iq(t) =
∫ b
a
Kq(τ)f(t+ τ)dt. If for some ξ the sequence of

functions Iq(t) converges uniformly to fξ(t) then

V (Iq − fξ, pn ↑ ∞, φ, [a, b])→ 0, q →∞,

where fξ(t) = f(t+ ξ).
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Corollary

Let f be a periodic function with period 2π and σαn (f) be (C,α), α > 0, means of Fourier
series of f with respect to the trigonometric system. Then σαn (f) is convergent in variation
to f if and only if f ∈ AC(pn ↑ ∞, φ).

Corollary

Let Kq(t) ≥ 0,
∫ b
a
Kq(t)dt→ 1 as q →∞ and

∫ b−δ
a+δ Kq(t)dt→ 0 as q →∞ for each

0 < δ < 1
2 (b− a) and f is periodic with period b− a.

If f ∈ AC(pn ↑ ∞, φ, [a, b]) then V (Iq − fa, pn ↑ ∞, φ, [a, b])→ 0, where
fa(t) = f(t+ a).
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Thank You for Your attention!
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