A Minkowski-type result for linearly independent subsets of ideal lattices

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

15 August 2019 First Analysis Mathematica International Conference

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- \bullet Δ : discriminant of k
- $\bullet \ \mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- \bullet Δ : discriminant of k
- o: ring of integers of k
- $\bullet \ \mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

Question 1

Assume $vol(\mathcal{B}) = \Delta^{3/2}$. Is it true that $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta$?

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- Δ : discriminant of k
- o: ring of integers of k
- $\bullet \ \mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

Question 1

Assume $vol(\mathcal{B}) = \Delta^{3/2}$. Is it true that $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta$?

Theorem (Minkowski 1891, Blichfeldt 1921)

- $|\mathfrak{o} \cap \mathcal{B}| \gg_d \frac{\operatorname{vol}(\mathcal{B})}{\Delta^{1/2}}$
- $|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\mathsf{vol}(\mathcal{B})}{\Lambda^{1/2}}$ if $\mathfrak{o} \cap \mathcal{B}$ contains d independent vectors.

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- \bullet Δ : discriminant of k
- \mathfrak{o} : ring of integers of k
- $\mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

Question 1

Assume $vol(\mathcal{B}) = \Delta^{3/2}$. Is it true that $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta$?

Theorem (Minkowski 1891, Blichfeldt 1921)

- $|\mathfrak{o} \cap \mathcal{B}| \gg_d \frac{\operatorname{vol}(\mathcal{B})}{\Lambda^{1/2}}$
- $|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\mathsf{vol}(\mathcal{B})}{\Lambda^{1/2}}$ if $\mathfrak{o} \cap \mathcal{B}$ contains d independent vectors.

Question 2

Assume $\operatorname{vol}(\mathcal{B}) = \Delta^{3/2}$. Does $\mathfrak{o} \cap \mathcal{B}$ contain d independent vectors?

Main result (crude version)

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- Δ : discriminant of k
- \mathfrak{o} : ring of integers of k
- $\mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

Theorem (Fraczyk-Harcos-Maga 2019)

If $\mathfrak{o}\cap\mathcal{B}$ does not contain d independent vectors, then

$$\operatorname{vol}(\mathcal{B}) \ll_d \Delta,$$
 and in fact $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta^{1/2}.$

Main result (crude version)

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- Δ : discriminant of k
- \mathfrak{o} : ring of integers of k
- $\mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$

Theorem (Fraczyk-Harcos-Maga 2019)

If $\mathfrak{o}\cap\mathcal{B}$ does not contain d independent vectors, then

$$\operatorname{vol}(\mathcal{B}) \ll_d \Delta$$
, and in fact $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta^{1/2}$.

Remarks

- The volume bound admits a quick proof by a deep topological result of McMullen (2005). We explain this in the next slide.
- ② Our proof combines group theory, ramification theory, and the geometry of numbers. It works for all number fields and all nonzero ideals.

• McMullen (2005) proved that there is a box $\mathcal{C} = \prod_j [-C_j, C_j]$ such that $\operatorname{vol}(\mathcal{C}) \ll_d \Delta^{1/2}$ and $\mathfrak{o} \cap \mathcal{C}$ contains d independent vectors. Fix such a box \mathcal{C} .

- McMullen (2005) proved that there is a box $\mathcal{C} = \prod_j [-C_j, C_j]$ such that $\operatorname{vol}(\mathcal{C}) \ll_d \Delta^{1/2}$ and $\mathfrak{o} \cap \mathcal{C}$ contains d independent vectors. Fix such a box \mathcal{C} .
- Assume that $\mathcal{B} = \prod_j [-B_j, B_j]$ is an arbitrary box of sufficiently large volume: $\operatorname{vol}(\mathcal{B})/\operatorname{vol}(\mathcal{C}) > 2^d \Delta^{1/2}$.

- McMullen (2005) proved that there is a box $\mathcal{C} = \prod_j [-C_j, C_j]$ such that $\operatorname{vol}(\mathcal{C}) \ll_d \Delta^{1/2}$ and $\mathfrak{o} \cap \mathcal{C}$ contains d independent vectors. Fix such a box \mathcal{C} .
- Assume that $\mathcal{B} = \prod_j [-B_j, B_j]$ is an arbitrary box of sufficiently large volume: $\operatorname{vol}(\mathcal{B})/\operatorname{vol}(\mathcal{C}) > 2^d \Delta^{1/2}$.
- **3** By Minkowski's theorem, the box $\prod_j [-B_j/C_j, B_j/C_j]$ contains a nonzero lattice point $x \in \mathfrak{o}$.

- McMullen (2005) proved that there is a box $\mathcal{C} = \prod_j [-C_j, C_j]$ such that $\operatorname{vol}(\mathcal{C}) \ll_d \Delta^{1/2}$ and $\mathfrak{o} \cap \mathcal{C}$ contains d independent vectors. Fix such a box \mathcal{C} .
- Assume that $\mathcal{B} = \prod_j [-B_j, B_j]$ is an arbitrary box of sufficiently large volume: $\operatorname{vol}(\mathcal{B})/\operatorname{vol}(\mathcal{C}) > 2^d \Delta^{1/2}$.
- **3** By Minkowski's theorem, the box $\prod_j [-B_j/C_j, B_j/C_j]$ contains a nonzero lattice point $x \in \mathfrak{o}$.
- **4** Clearly, $x(\mathfrak{o} \cap \mathcal{C}) \subset \mathfrak{o} \cap \mathcal{B}$ contains d independent vectors.

- McMullen (2005) proved that there is a box $\mathcal{C} = \prod_j [-C_j, C_j]$ such that $\operatorname{vol}(\mathcal{C}) \ll_d \Delta^{1/2}$ and $\mathfrak{o} \cap \mathcal{C}$ contains d independent vectors. Fix such a box \mathcal{C} .
- Assume that $\mathcal{B} = \prod_j [-B_j, B_j]$ is an arbitrary box of sufficiently large volume: $\operatorname{vol}(\mathcal{B})/\operatorname{vol}(\mathcal{C}) > 2^d \Delta^{1/2}$.
- **3** By Minkowski's theorem, the box $\prod_j [-B_j/C_j, B_j/C_j]$ contains a nonzero lattice point $x \in \mathfrak{o}$.
- **4** Clearly, $x(\mathfrak{o} \cap \mathcal{C}) \subset \mathfrak{o} \cap \mathcal{B}$ contains d independent vectors.
- Hence if $\mathfrak{o} \cap \mathcal{B}$ does not contain d independent vectors, then $\operatorname{vol}(\mathcal{B}) \leqslant 2^d \Delta^{1/2} \operatorname{vol}(\mathcal{C}) \ll_d \Delta.$

Sketching the proof of the main result (1 of 2)

① Assume that $\mathfrak{o} \cap \mathcal{B}$ generates an *m*-dimensional sublattice Λ .

Sketching the proof of the main result (1 of 2)

- **①** Assume that $\mathfrak{o} \cap \mathcal{B}$ generates an *m*-dimensional sublattice Λ .
- ② By the rank theorem in linear algebra, we can project Λ orthogonally onto a coordinate m-subspace such that the image is an m-dimensional lattice. By Blichfeldt's theorem,

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\operatorname{vol}(\operatorname{proj} \mathcal{B})}{\operatorname{covol}(\operatorname{proj} \Lambda)}.$$

Sketching the proof of the main result (1 of 2)

- **①** Assume that $\mathfrak{o} \cap \mathcal{B}$ generates an *m*-dimensional sublattice Λ .
- ② By the rank theorem in linear algebra, we can project Λ orthogonally onto a coordinate m-subspace such that the image is an m-dimensional lattice. By Blichfeldt's theorem,

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\operatorname{vol}(\operatorname{proj} \mathcal{B})}{\operatorname{covol}(\operatorname{proj} \Lambda)}.$$

3 The Galois group G of the Galois closure of k acts on the admissible m-projections by permuting the coordinate axes. Taking the geometric mean over a G-orbit, we obtain

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\text{geometric mean of vol(proj } \mathcal{B})}{\text{geometric mean of covol(proj } \Lambda)}.$$

Sketching the proof of the main result (2 of 2)

• Recall from the previous slide that

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\text{geometric mean of vol(proj } \mathcal{B})}{\text{geometric mean of covol(proj } \Lambda)}.$$

It is straightforward to show that $\mathsf{numerator} \asymp_{d} \mathsf{vol}(\mathcal{B})^{\frac{m}{d}}.$

Sketching the proof of the main result (2 of 2)

Recall from the previous slide that

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\text{geometric mean of vol(proj }\mathcal{B})}{\text{geometric mean of covol(proj }\Lambda)}.$$

It is straightforward to show that $\mathsf{numerator} \asymp_{d} \mathsf{vol}(\mathcal{B})^{\frac{m}{d}}.$

5 It is much harder to show that

$$\text{denominator} \gg_d \begin{cases} \Delta^{\max\left(0,\frac{m}{d}-\frac{1}{2}\right)} & \text{in general;} \\ \Delta^{\frac{m(m-1)}{2d(d-1)}} & \text{if } G \text{ is 2-homogeneous.} \end{cases}$$

Sketching the proof of the main result (2 of 2)

4 Recall from the previous slide that

$$|\mathfrak{o} \cap \mathcal{B}| \ll_d \frac{\text{geometric mean of vol(proj }\mathcal{B})}{\text{geometric mean of covol(proj }\Lambda)}.$$

It is straightforward to show that $\mathsf{numerator} \asymp_{d} \mathsf{vol}(\mathcal{B})^{\frac{m}{d}}.$

$$\text{denominator} \gg_d \begin{cases} \Delta^{\max\left(0,\frac{m}{d}-\frac{1}{2}\right)} & \text{in general;} \\ \Delta^{\frac{m(m-1)}{2d(\sigma-1)}} & \text{if G is 2-homogeneous.} \end{cases}$$

6 Combining these bounds with Minkowski's theorem, we infer

$$\frac{\operatorname{vol}(\mathcal{B})}{\Delta^{\frac{1}{2}}} \ll_d |\mathfrak{o} \cap \mathcal{B}| \ll_d \operatorname{vol}(\mathcal{B})^{\frac{m}{d}} \begin{cases} \Delta^{\min\left(0,\frac{1}{2} - \frac{m}{d}\right)} & \text{in general;} \\ \Delta^{-\frac{m(m-1)}{2d(d-1)}} & \text{if } G \text{ is 2-homog.} \end{cases}$$

Main result (fine version)

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- G: Galois group of Galois closure of k
- \bullet Δ : discriminant of k
- \mathfrak{o} : ring of integers of k
- $\mathcal{B} := [-B_1, B_1] \times \cdots \times [-B_d, B_d]$
- ullet m: maximal number of independent vectors contained in $\mathfrak{o}\cap\mathcal{B}$

Theorem (Frączyk-Harcos-Maga 2019)

If m < d, then

$$\operatorname{vol}(\mathcal{B}) \ll_d \Delta^{\min\left(1,\frac{d}{2d-2m}\right)}, \quad \text{and in fact} \quad |\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta^{\min\left(\frac{1}{2},\frac{m}{2d-2m}\right)}.$$

Further, if m < d and G is 2-homogeneous, then

$$\operatorname{vol}(\mathcal{B}) \ll_d \Delta^{\frac{d-1+m}{2d-2}},$$
 and in fact $|\mathfrak{o} \cap \mathcal{B}| \ll_d \Delta^{\frac{m}{2d-2}}.$

Bounds for successive minima

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- G: Galois group of Galois closure of k
- Δ : discriminant of k
- o: ring of integers of k
- $\lambda_1\leqslant\cdots\leqslant\lambda_d$: successive minima of ${\mathfrak o}$

Corollary (Frączyk–Harcos–Maga 2019)

For all $m \in \{0, \dots, d-1\}$ we have

$$\Delta^{\max\left(0,\frac{1}{d}-\frac{1}{2m+2}\right)} \ll_d \lambda_{m+1} \ll_d \Delta^{\min\left(\frac{1}{d},\frac{1}{2d-2m}\right)}.$$

If G is 2-homogeneous, then for all $m \in \{0, \ldots, d-1\}$ we have

$$\Delta^{\frac{m}{2d(d-1)}} \ll_d \lambda_{m+1} \ll_d \Delta^{\frac{d-1+m}{2d(d-1)}}.$$

Bounds for successive minima

- k: totally real number field of degree d, embedded into \mathbb{R}^d
- G: Galois group of Galois closure of k
- Δ : discriminant of k
- o: ring of integers of k
- $\lambda_1 \leqslant \cdots \leqslant \lambda_d$: successive minima of \mathfrak{o}

Corollary (Frączyk-Harcos-Maga 2019)

For all $m \in \{0, \dots, d-1\}$ we have

$$\Delta^{\max\left(0,\frac{1}{d}-\frac{1}{2m+2}\right)} \ll_d \lambda_{m+1} \ll_d \Delta^{\min\left(\frac{1}{d},\frac{1}{2d-2m}\right)}.$$

If G is 2-homogeneous, then for all $m \in \{0, \ldots, d-1\}$ we have

$$\Delta^{\frac{m}{2d(d-1)}} \ll_d \lambda_{m+1} \ll_d \Delta^{\frac{d-1+m}{2d(d-1)}}.$$

Interestingly, the upper bound for λ_d was established earlier by Bhargava-Shankar-Taniguchi-Thorne-Tsimerman-Zhao (2017).