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Setup and motivation

k : totally real number �eld of degree d , embedded into Rd

∆: discriminant of k

o: ring of integers of k

B := [−B1,B1]× · · · × [−Bd ,Bd ]

Question 1

Assume vol(B) = ∆3/2. Is it true that |o ∩ B| �d ∆?

Theorem (Minkowski 1891, Blichfeldt 1921)

|o ∩ B| �d
vol(B)

∆1/2

|o ∩ B| �d
vol(B)

∆1/2 if o ∩ B contains d independent vectors.

Question 2

Assume vol(B) = ∆3/2. Does o∩B contain d independent vectors?
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Main result (crude version)

k : totally real number �eld of degree d , embedded into Rd

∆: discriminant of k

o: ring of integers of k

B := [−B1,B1]× · · · × [−Bd ,Bd ]

Theorem (Fr¡czyk�Harcos�Maga 2019)

If o ∩ B does not contain d independent vectors, then

vol(B)�d ∆, and in fact |o ∩ B| �d ∆1/2.

Remarks

1 The volume bound admits a quick proof by a deep topological

result of McMullen (2005). We explain this in the next slide.

2 Our proof combines group theory, rami�cation theory, and the

geometry of numbers. It works for all number �elds and all

nonzero ideals.
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Deducing the volume bound from McMullen's result

1 McMullen (2005) proved that there is a box C =
∏

j [−Cj ,Cj ]

such that vol(C)�d ∆1/2 and o ∩ C contains d independent

vectors. Fix such a box C.

2 Assume that B =
∏

j [−Bj ,Bj ] is an arbitrary box of

su�ciently large volume: vol(B)/ vol(C) > 2d∆1/2.

3 By Minkowski's theorem, the box
∏

j [−Bj/Cj ,Bj/Cj ] contains
a nonzero lattice point x ∈ o.

4 Clearly, x(o ∩ C) ⊂ o ∩ B contains d independent vectors.

5 Hence if o ∩ B does not contain d independent vectors, then

vol(B) 6 2d∆1/2 vol(C)�d ∆.
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Sketching the proof of the main result (1 of 2)

1 Assume that o ∩ B generates an m-dimensional sublattice Λ.

2 By the rank theorem in linear algebra, we can project Λ
orthogonally onto a coordinate m-subspace such that the

image is an m-dimensional lattice. By Blichfeldt's theorem,

|o ∩ B| �d
vol(projB)

covol(proj Λ)
.

3 The Galois group G of the Galois closure of k acts on the

admissible m-projections by permuting the coordinate axes.

Taking the geometric mean over a G -orbit, we obtain

|o ∩ B| �d
geometric mean of vol(projB)

geometric mean of covol(proj Λ)
.
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Sketching the proof of the main result (2 of 2)

4 Recall from the previous slide that

|o ∩ B| �d
geometric mean of vol(projB)

geometric mean of covol(proj Λ)
.

It is straightforward to show that

numerator �d vol(B)
m
d .

5 It is much harder to show that

denominator�d

{
∆max(0,md −

1

2
) in general;

∆
m(m−1)
2d(d−1) if G is 2-homogeneous.

6 Combining these bounds with Minkowski's theorem, we infer

vol(B)

∆
1

2

�d |o∩B| �d vol(B)
m
d

{
∆min(0, 1

2
−m

d ) in general;

∆
− m(m−1)

2d(d−1) if G is 2-homog.
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Main result (�ne version)

k : totally real number �eld of degree d , embedded into Rd

G : Galois group of Galois closure of k

∆: discriminant of k

o: ring of integers of k

B := [−B1,B1]× · · · × [−Bd ,Bd ]

m: maximal number of independent vectors contained in o ∩ B

Theorem (Fr¡czyk�Harcos�Maga 2019)

If m < d , then

vol(B)�d ∆min(1, d
2d−2m ), and in fact |o ∩ B| �d ∆min( 1

2
, m
2d−2m ).

Further, if m < d and G is 2-homogeneous, then

vol(B)�d ∆
d−1+m
2d−2 , and in fact |o ∩ B| �d ∆

m
2d−2 .



Bounds for successive minima

k : totally real number �eld of degree d , embedded into Rd

G : Galois group of Galois closure of k

∆: discriminant of k

o: ring of integers of k

λ1 6 · · · 6 λd : successive minima of o

Corollary (Fr¡czyk�Harcos�Maga 2019)

For all m ∈ {0, . . . , d − 1} we have

∆max(0, 1d−
1

2m+2
) �d λm+1 �d ∆min( 1

d
, 1

2d−2m ).

If G is 2-homogeneous, then for all m ∈ {0, . . . , d − 1} we have

∆
m

2d(d−1) �d λm+1 �d ∆
d−1+m
2d(d−1) .

Interestingly, the upper bound for λd was established earlier by

Bhargava�Shankar�Taniguchi�Thorne�Tsimerman�Zhao (2017).
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