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Some notation

f' R® - R even continuous
fRn e2mUTY) g the Fourier transform

f(x) = (]:n|) radial functions

}"\(\y|) Chp |y\1*ﬁ the Fourier transform of f(|z|)
o F(t) T (2r|y|t)t= di

Jo the Bessel function

Gl < Qa2 < ... positive zeros of J,

compact suppf bandlimited functions

>0 (distributional) positive definite functions

rapidly decreasing smooth f Schwartz functions

B(x,r) the Euclidean ball
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Sphere packing problem
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The center sphere packing density

5 =l Nr
n = lImsup ————,
R—o00 (2}%)n

where

Np =max {N: Iz C[-R,R", |z — x| > 2, i#j}

On, = 0n(Px), 'Pi the densest packing
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Linear programming (Delsarte) bound R

Let R> 1 and f be a positive definite Schwartz functions s.t. f(0) =1 and
f < 0 outside of B(0,2) (Fig. 1).

Consider
1 n (T
Jour@) = D fla+2Rr) = G D, (e,
vezn ne2R)—1Z"
Then
flie)>2<0 Nr fliz)>2<0
Ni Z fper(xi - xj) = Nprer(O) < NRf(O)
Z ouli=i) 1 o ki 2 >0, fo)=1 N2
i,j=1 _ N 2mi{x ;1) S R
orp 2 TW e > Rp
HE(2R)—1Z™ Jj=1

DG (2000, bandlimited functions), H. Cohn and N. Elkies (2001).
Thus,
8, <P :=inf{f(0): f>0, f(O)=1, f

RO\ B(0,2) = 0},

where one can assume f, f € L}(R").
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Hi‘_ Dr. Elfzabe']'h?
Yesh, vh... T accicenta)ly 10K
the Furier transform of ay cat ...

Meow !

%,







Known results

61 = otF Z
5o Ay L. Fejes Té6th (1953) (7= 657)
3 fcc T. Hales (1998-2006, Kepler conjecture)
s = o5P Eg M. Viazovska (2016, via modular forms)
Oo4 = (5'2‘5 Aoy H. Cohn, A. Kumar, S. Miller,

D. Radchenko, M. Viazovska (2016)
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The Turan problem

Note that the problem

: > = £
inf {f(O) f=0, f(0)=1, f{Rn\B(O72) = O}
now is known as the Turan problem (Fig. 2).

The function f,(z) = XBQLXBOD o extremal.
fe(z) vol (xB(0,1))?

C. Siegel (1935, Minkowski's theorem),

J. Holt, J. Vaaler (1996, one-sided approximation), DG (2001),

M. Kolountzakis, Sz. Révész (2003), V. Arestov, E. Berdysheva (2001,
polytops),

DG, V. lvanov, A. Manoshina, Yu. Rudomazina (d = 1),

G. Bianchi, M. Kelly (2014, the Blaschke-Santalo inequality and the
Mabhler problem),

E. Hlawka (1981), DG, C. Tuxoxos (2018, the Wiener problem).
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Fig. 2: Turan problem
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Uncertainty principles of Bourgain, Clozel, and Kahane

J. Bourgain, L. Clozel, and J.-P. Kahane (2010) [BCK10],
F. Gongalves, D. Oliveira e Silva, and S. Steinerberger (2017) [GOS17],
H. Cohn and F. Gongalves (2017) [CG17].

Let f, f € LY(R™) \ {0}. Find

sup{|z|: f(x) < 0} - sup{|z|: f(m) <0} — inf = Af
f(0)<0, f(0)<0
([BCK10])

sup{|z|: f(z) < 0} - sup{|z|: f(z) >0} — inf = A,
£(0)=0, f(0)<0

([CG17])
(Fig. 3, 4).
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Fig. 3: A}
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Fig. 4: A
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Known results

There exists the radial extremal [GOS17], [CG17]

functions f s.t.

f(0)=f(0)=0 and

f=%f (47)

o < A < Bt2 [BCK10]

0.2025 < Af <0.353 [GOS17]

A, =2 [CG17]

A, < 4 (6P [CG17]

# S 1477 S 0.6409...;7514‘0(1)) [CG17] (using
Kabatiansky—Levenshtein
bound)

AT =1, A5 =2, Ay, =4 via oLP
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One-sided approximation by positive definite functions

H. Cohn and M. de Courcy-lreland (2018, discrete energy of a packing P):

pf(0) = £(0) = inf, F>0, f(z) <)

The potential ¥(1/r) completely monotonic and p > 0 is the density of P.

They considered the following radial function:

o'~ J3 1 (|a])
-EF) - EE)

a1 D41

(qx are positive zeros of Jn_1),

and proved that this function is positive definite.

Note that ¢ = x[02) = SLP.
M. Gaél and Sz. Gy. Révész (2019):

Co=ifC, f<CXou] - Xpog = goscn/ o
B(0,2) B(0,1)

where ¢, o > 0.
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Our main purpose has been complete solving of the generalized At-type
problems for bandlimited functions.
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Some historical background: Trigonometric polynomials
V. Arnold (1996): Let

1
tn = Z cre®™ () <0, z¢la,b] = b—a>—.
1<[k|<n—1

A. Babenko (1984):

. 1

infmes{z e T:t, >0} =—.
n

V. Yudin (2002) tk,TL = ZkS|J|Sn—k Cj627rjx'

(cos mnz)?

thr(®) = '
n,kz( ) (008277-1'—COS%)...(COSQW$—COS%)
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Logan's problems

Problem 0: Find the smallest Ao > 0 s.t. that f(z) <0, = > X\o, where
1
f(z) = / cos (2mxt) du(t), dp >0, f(0)=1.
0

Logan showed that admissible functions in Problem 0 are integrable,
(cos (mx))?

Ao = 1/2, and the unique extremizer is fy(z) = = (22)?

Jg f(z)dz = 0.

Problem 1: Find the smallest \y > 0 such that f(z) >0, = > A\, where
[ is a integrable function from Problem 0 s.t. [, f(x)dx = 0.

satisfying

It turns out that admissible functions are integrable with respect to the
weight 22, and \; = 3/2. Moreover, the unique extremizer is

COos (TTx 2 . .
fi(z) = (17(2;)2)517)()236/3)2) satisfying [, 22 f(z) dz = 0.

It is natural to continue and consider the following problems.
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Logan m-problem

Let m=0,1,2,.... Find
sup{|z|: (=1)" f(z) > 0} - sup{|z|: = € supp ]A”} — inf =: APand (),

where the infimum is taken over all nontrivial positive definite bandlimited
functions f s.t. if m > 1, then f € LY(RY, |z|>*™~2 dx) and

/|x\2kf(x)dx:0 for k=0,...,m—1
Rd
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Logan (m, s)-problems

Let m,s =0,1,2,.... Find
sup{|z|: (—1)"f(z) > 0} - sup{|z|: z € supp f } — inf =: AP (m_ s),

where the infimum is taken over all nontrivial even bandlimited functions
f e LY (R, |z|>™ dx) s.t.

Jga 2| f(z)dz =0, k=0,...,m—1,
Jgalz* f(z)dz =0, £=0,...,s—1,

and

|z[*™ f(2) dx > 0, 22 F () dz < 0
R4 RA

(Fig. 5).
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Fig. 5: Problem AP2"d(m, s)
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Interrelation between A* and AP2"d(0, 0)

If m =s =0, then

Aband () = inf sup{|z|: f(x) > 0} - sup{|z|: = € supp }”\}
f(0)<0, f(0)>0

Therefore, A < Aband(0,0).
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Theorem 1

One has AP (m) = dmtl where g, denotes k-th positive zero of Jn_.

n 2
(" Bag i) . . y
The function ( ‘ ‘2) ( B ) is the unique extremizer up to a positive
1= -

Im+1
constant.

Moreover, this function satisfies [gq |z|[*"™ f(z) dz = 0.

In the case m = 0, 1 this theorem was proved by DG (2000).
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Theorem 2

One has AP (m, s) = q%ﬂ%ﬂ, Jo(Gar) =0, a=%+s.

Each extremizer f(x) has the form r(z) - fo.m(|x|), where

(el Tae)’?
fam(f) = (1—%)...(1—ﬁ

)

2
qa,m+1

and

s+1
r(z) = Z 2> 2 hgj(x) > 0, [2| > qame1,
=0

haj(x) are even harmonic polynomials of order at most 2j s.t. ho(0) > 0,
ha(0) = ... = hasy2(0) = 0.

Moreover, [na |2|*™ f(z)dz = [qu |z f (z) dz = 0.

This theorem again implies that A7 < 5.1 _ ntO®!/?) as n — oo.

T 21
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Idea 1 of proof. Extremal quadrature formulas

The case 5LP: Consider the Korkine—Zolotareff lattice Fs. Using
self-duality of Eg and the Poisson summation formula with a radial
Schwartz function f, we obtain

oo 1 o0 R
kZONkf(\/ﬂ) = mkzoj\@f(\/ﬁ)a

where positive integers Ny associated with modular forms. Thus,
F(0) > (det Eg)"Y2f(0) if f>0 and f(t)<0 for t> 2.
Construction of the extremal functions needs the theory of modular forms.

Our case: We use

r—1 00
> QQQ r.k
/0 F)2et dt = Z Oéz,rf(m)(o) + Z %rf<%>, Vi > 0.
=0 k=1

R. Ghanem and C. Frappier (1998).
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ldea 2 of proof. Positive definiteness of the extremizer. A

2]~ o (|x])

Let = .
€ gaJnOxD (1_£§%)“<1_quil)

H. Cohn, M. de Courcy-Ireland (2018) proved positive definiteness of g, in the
case a = ¢ — 1 using

P,(Lo"a) (1 — % + o(n*Q))

lim = Cot™ " Ja(t)
n— 00 Péa’a)(l)
Pl (z) . . . .
and the fact that TR ey s a linear combination of
P2, ... ,Pé(i’,j)(z) with nonnegative coefficients for each k < n, where

T1pn > ...> Tpp are zeros of the Jacobi polynomial P,Sa’o‘)(z)

The case k = 1 corresponds to Christoffel—Darboux formula, the case k = 2 was
given by DG and V. lvanov (2000), and the case k > 1 by H. Cohn and
A. Kumar (2007).

We extend the Cohn—Kumar approach involving the Bessel translation operator.
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Positive definiteness of g . B

We found a direct way to prove positive definiteness of g, using Sturm'’s
theorem on zeros of linear combinations of eigenfunctions of
Sturm-—Liouville problem.

First, we show that the Fourier transform of g, ,, can be expressed via a
linear combination of Bessel functions {t~“J,(qirt)}32, =: ®, t € [0,1].
Moreover, this combination has a zero of sufficiently large order at ¢t = 1.

Then we prove the fact (probably new) that the system ® forms
Chebyshev systems on [0,1). It means that any nontrivial linear
combination P(t) = >"}_; Akpr(t) has at most n — 1 zeros (counting
multiplicity) on [0,1).

To prove this we use the following deep Sturm'’s theorem.
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Sturm's theorem (Sturm, 1836; Liouville, 1836)

Let {V}}72, be the system of eigenfunctions associated to eigenvalues
p1 < p2 < ... of the following Sturm—Liouville problem on [a, b]:

(KV') + (pG — L)V =0,
(KV' —hV)(a) =0, (KV'+ HV)(b) =0,

where G, K, L € Cla,b], K € C(a,b), K,G >0 on (a,b), h, H € [0,00] and p
denotes the spectral parameter.

Then for any nontrivial real polynomial of the form

P = ZAka, m,neN, m<n,
k=m

we have

m—1<|{t € (a,b): P(t)=0} <n-1

In particular, every k-th eigenfunction V}, has exactly k — 1 simple zeros in (a,b).

This theorem is well known for trigonometric system as the Sturm—-Hurwitz
theorem.

P. Bérard and B. Helffer (2017).
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Thank you for your attention!
Questions?
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