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Additive Sincov’s equation
Assume that X is a non-void set, (G , +) is an abelian group
and S : X × X → G .

The additive Sincov’s equation is:

T (x , z) = T (x , y) + T (y , z), x , y , z ∈ X . (1)

It is easy to obtain the general solution of (1). Fix arbitrarily
some z0 ∈ X and rewrite (1) as

T (x , y) = T (x , z0)− T (y , z0), x , y ∈ X .

Denote f = T (·, z0) to get

T (x , y) = f (x)− f (y), x , y ∈ X .

Conversely, for arbitrary function f : X → G map T given as
above solves (1).
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Multiplicative Sincov’s equation

Assume that X is a non-void set and S : X × X → R.

The multiplicative Sincov’s equation is:

S(x , z) = S(x , y) · S(y , z), x , y , z ∈ X .

The general solution is given by S = 0 on X × X or

S(x , y) = f (x)
f (y) , x , y ∈ X ,

where f : X → R \ {0} is an arbitrary function (see D. Gronau
[2, Theorem]).
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First Sincov’s inequality

We will study the inequality:

G(x , z) ≤ G(x , y) · G(y , z), x , y , z ∈ X . (2)

Let us associate with G : X × X → R a map G∗ : X × X → R
given by

G∗(x , y) = G(y , x), x , y ∈ X .

G solves (2) if and only if G∗ solves (2).
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Example
For a non-void set X every G : X × X → (−∞, 0] and every
G : X × X → [c , c2] with some c ≥ 1 satisfies (2).

Proposition
Assume that X is a non-void set and G : X × X → (0, +∞) is
a bounded solution of (2). Then there exists some c ≥ 1 such
that G(X × X ) ⊆ [1/c , c].
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Proposition
Assume that X is a topological connected space and
G : X × X → R is a continuous solution of (2). If G attains a
non-positive value, then G is non-positive on X × X.
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Example
Let A : R→ R be a discontinuous additive function with
connected graph.

Take X = R and

G1(a, b) = exp(A(a)− A(b)), a, b ∈ R.

G1 is a discontinuous solution of (2) with all sections having
the Darboux property.
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Example
Define X = {(x ,A(x)) : x ∈ R} and

G2((a,A(a)), (b,A(b))) = exp(A(a)− A(b)), a, b ∈ R.

G2 is continuous and X is connected.

Example
Let X be a disconnected topological space. Define G3(a, b) as
being equal to 1 whenever a, b lies in the same connected
component of X and −1 elsewhere. G3 is a continuous
solution of (2).
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(2) G(x , z) ≤ G(x , y) · G(y , z)

We will denote the diagonal of the product X × X as

∆ = {(x , x) : x ∈ X}.

Theorem
Assume that X is a separable topological space,
(x0, y0) ∈ X × X and G : X × X → (0, +∞) is a solution of
(2) such that G is continuous and equal to 1 at every point of
∆. Then there exists a function S : X × X → (0, +∞) such
that S is a solution of multiplicative Sincov’s equation,
S(x0, y0) = G(x0, y0) and estimate 1

G∗ ≤ S ≤ G is satisfied.
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Let us introduce a class of functions associated with a map
G : X × X → (0, +∞).

G(G) :=
{
f : X → (0, +∞) : ∀x ,y∈X

f (x)
f (y) ≤ G(x , y)

}
.
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(2) G(x , z) ≤ G(x , y) · G(y , z)

Corollary
Assume that X is a separable topological space and
G : X × X → (0, +∞) is a solution of (2) such that G is
continuous and equal to 1 at every point of ∆.

Then

G(a, b) = sup
{
f (a)
f (b) : f ∈ G(G)

}
, a, b ∈ X .

Conversely, for an arbitrary family G of positive functions on X
every mapping G : X × X → (0, +∞) defined as above solves
Sincov’s equation and is equal to 1 on ∆.
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Second Sincov’s inequality

The reverse inequality to (2), i.e. the inequality

F (x , z) ≥ F (x , y) · F (y , z), x , y , z ∈ X (3)

is not fully symmetric to (2).

Introduce a class of functions associated with a map
F : X × X → (0, +∞).

F(F ) =
{
f : X → (0, +∞) : ∀x ,y∈X

f (x)
f (y) ≥ F (x , y)

}
.
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(3) F (x , z) ≥ F (x , y) · F (y , z)

Corollary
Assume that X is a separable topological space and
F : X × X → (0, +∞) is a solution of (3) which is continuous
and equal to 1 at every point of ∆.

Then

F (a, b) = inf
{
f (a)
f (b) : f ∈ F(F )

}
, a, b ∈ X .

Conversely, for an arbitrary family F of positive functions on
X every mapping F : X × X → (0, +∞) defined as above
solves (3) and is equal to 1 on ∆.
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(3) F (x , z) ≥ F (x , y) · F (y , z)

Lemma
Assume that X is a topological space and
F : X × X → [0, +∞) is a continuous solution of (3).

Then
the set

Z = {(x , y) ∈ X × X : F (x , y) = 0}

of zeros of F is either empty, or for every point (a, b) ∈ Z, it
contains either at least one of the sets {a} × X or X × {b}, or
a set of the form U1 × {b} ∪ {a} × U2, where U1,U2 ⊂ X are
open non-void sets.
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Set ideals

A family I ⊂ 2X is a set ideal if

(a) A ∈ I and B ⊂ A implies B ∈ I,
(b) A,B ∈ I implies A ∪ B ∈ I.
Given a set ideal I of subsets of a set X we define the product
ideal I ⊗ I of subsets of X × X as the family of all sets
A ⊆ X × X such that

{x ∈ X : A[x ] /∈ I} ∈ I,

where
A[x ] = {y ∈ X : (x , y) ∈ A}.
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(3) F (x , z) ≥ F (x , y) · F (y , z)

Corollary
Assume that X is a topological space, I ⊂ 2X is a set ideal
which does not contain open non-void sets and
F : X × X → [0, +∞) is a continuous solution of (3).

Then,
at least one of the following possibilities holds true:
(a) the set Z of zeros of F is empty,
(b) Z contains a set of the form {a} × X or X × {b},
(c) Z is a large set with respect to the product ideal I ⊗ I

on X × X.



Page 16
Sincov-type functional inequalities | August 12–17, 2019 | Włodzimierz Fechner Second Sincov’s inequality

(3) F (x , z) ≥ F (x , y) · F (y , z)

Corollary
Assume that X is a topological space, I ⊂ 2X is a set ideal
which does not contain open non-void sets and
F : X × X → [0, +∞) is a continuous solution of (3). Then,
at least one of the following possibilities holds true:
(a) the set Z of zeros of F is empty,
(b) Z contains a set of the form {a} × X or X × {b},
(c) Z is a large set with respect to the product ideal I ⊗ I

on X × X.



Page 17
Sincov-type functional inequalities | August 12–17, 2019 | Włodzimierz Fechner Additive Sincov’s inequality

Additive Sincov’s inequality

Generalized metric space or Lawvere space is a nonempty set
X together with a function H : X × X → R, called a
generalized metric, which is nonnegative, vanishes on ∆ and
satisfies the triangle inequality:

H(x , z) ≤ H(x , y) + H(y , z), x , y , z ∈ X . (4)



Page 18
Sincov-type functional inequalities | August 12–17, 2019 | Włodzimierz Fechner Additive Sincov’s inequality

Additive Sincov’s inequality

For arbitrary H : X × X → R let us define

H(H) = {ϕ : X → R : ∀x ,y∈X ϕ(x)− ϕ(y) ≤ H(x , y)} .
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Corollary
Assume that X is a separable topological space and
H : X × X → R is a solution of (4) which is continuous and
equal to 0 at every point of ∆.

Then

H(a, b) = sup {ϕ(a)− ϕ(b) : ϕ ∈ H(H)} , a, b ∈ X .

Conversely, for an arbitrary family H of real functions on X
every mapping H : X × X → R defined as above solves (4)
and is equal to 0 on ∆.
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Corollary
Under assumptions of the last corollary, there exist a quotient
subspace X0 of X such that:

(a) family H(H) separates points of X0,
(b) every ϕ ∈ H(H) satisfies a Lipschitz-type condition

|ϕ(a)− ϕ(b)| ≤ 1
2 [H(a, b) + H(b, a)], a, b ∈ X ,

(c) H |X0×X0(a, b) = 0 if and only if a = b.
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attention!
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