Sincov-type functional inequalities and generalized metrics

Włodzimierz Fechner Lodz University of Technology, Łódź Poland

AnMath2019 Alfréd Rényi Institute of Mathematics

The outline of the talk

- Sincov equations
- First Sincov's inequality
- Second Sincov's inequality
- Additive Sincov's inequality
- References

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \rightarrow G$.

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \to G$. The additive Sincov's equation is:

$$T(x,z) = T(x,y) + T(y,z), \quad x,y,z \in X.$$
(1)

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \rightarrow G$. The additive Sincov's equation is:

$$T(x,z) = T(x,y) + T(y,z), \quad x,y,z \in X.$$
(1)

It is easy to obtain the general solution of (1).

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \rightarrow G$. The additive Sincov's equation is:

$$T(x,z) = T(x,y) + T(y,z), \quad x,y,z \in X.$$
(1)

It is easy to obtain the general solution of (1). Fix arbitrarily some $z_0 \in X$ and rewrite (1) as

$$T(x,y)=T(x,z_0)-T(y,z_0), \quad x,y\in X.$$

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \to G$. The additive Sincov's equation is:

$$T(x,z) = T(x,y) + T(y,z), \quad x,y,z \in X.$$
(1)

It is easy to obtain the general solution of (1). Fix arbitrarily some $z_0 \in X$ and rewrite (1) as

$$T(x,y) = T(x,z_0) - T(y,z_0), \quad x,y \in X.$$

Denote $f = T(\cdot, z_0)$ to get

$$T(x,y) = f(x) - f(y), \quad x,y \in X.$$

Assume that X is a non-void set, (G, +) is an abelian group and $S: X \times X \rightarrow G$. The additive Sincov's equation is:

$$T(x,z) = T(x,y) + T(y,z), \quad x,y,z \in X.$$
(1)

It is easy to obtain the general solution of (1). Fix arbitrarily some $z_0 \in X$ and rewrite (1) as

$$T(x,y) = T(x,z_0) - T(y,z_0), \quad x,y \in X.$$

Denote $f = T(\cdot, z_0)$ to get

$$T(x,y)=f(x)-f(y), \quad x,y\in X.$$

Conversely, for arbitrary function $f: X \to G$ map T given as above solves (1).

Multiplicative Sincov's equation

Assume that X is a non-void set and $S: X \times X \to \mathbb{R}$.

Multiplicative Sincov's equation

Assume that X is a non-void set and $S: X \times X \to \mathbb{R}$. The multiplicative Sincov's equation is:

$$S(x,z) = S(x,y) \cdot S(y,z), \quad x,y,z \in X.$$

Multiplicative Sincov's equation

Assume that X is a non-void set and $S: X \times X \to \mathbb{R}$. The multiplicative Sincov's equation is:

$$S(x,z) = S(x,y) \cdot S(y,z), \quad x,y,z \in X.$$

The general solution is given by S = 0 on $X \times X$ or

$$S(x,y) = rac{f(x)}{f(y)}, \quad x,y \in X,$$

where $f: X \to \mathbb{R} \setminus \{0\}$ is an arbitrary function (see D. Gronau [2, Theorem]).

First Sincov's inequality

We will study the inequality:

$$G(x,z) \leq G(x,y) \cdot G(y,z), \quad x,y,z \in X.$$
 (2)

First Sincov's inequality

We will study the inequality:

$$G(x,z) \leq G(x,y) \cdot G(y,z), \quad x,y,z \in X.$$
 (2)

Let us associate with $G \colon X \times X \to \mathbb{R}$ a map $G^* \colon X \times X \to \mathbb{R}$ given by

$$G^*(x,y) = G(y,x), \quad x,y \in X.$$

First Sincov's inequality

We will study the inequality:

$$G(x,z) \leq G(x,y) \cdot G(y,z), \quad x,y,z \in X.$$
 (2)

Let us associate with $G: X \times X \to \mathbb{R}$ a map $G^*: X \times X \to \mathbb{R}$ given by

$$G^*(x,y) = G(y,x), \quad x,y \in X.$$

G solves (2) if and only if G^* solves (2).

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

For a non-void set X every $G: X \times X \to (-\infty, 0]$ and every $G: X \times X \to [c, c^2]$ with some $c \ge 1$ satisfies (2).

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Page 5

For a non-void set X every $G: X \times X \to (-\infty, 0]$ and every $G: X \times X \to [c, c^2]$ with some $c \ge 1$ satisfies (2).

Proposition

Assume that X is a non-void set and $G: X \times X \to (0, +\infty)$ is a bounded solution of (2). Then there exists some $c \ge 1$ such that $G(X \times X) \subseteq [1/c, c]$.

Proposition

Page 6

Assume that X is a topological connected space and $G: X \times X \to \mathbb{R}$ is a continuous solution of (2). If G attains a non-positive value, then G is non-positive on $X \times X$.

(2) $G(x,z) \leq G(x,y) \cdot G(y,z)$

Let $A: \mathbb{R} \to \mathbb{R}$ be a discontinuous additive function with connected graph.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Let $A: \mathbb{R} \to \mathbb{R}$ be a discontinuous additive function with connected graph. Take $X = \mathbb{R}$ and

$$G_1(a,b) = \exp(A(a) - A(b)), \quad a,b \in \mathbb{R}.$$

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Page

Let $A: \mathbb{R} \to \mathbb{R}$ be a discontinuous additive function with connected graph. Take $X = \mathbb{R}$ and

$$G_1(a,b) = \exp(A(a) - A(b)), \quad a,b \in \mathbb{R}.$$

 G_1 is a discontinuous solution of (2) with all sections having the Darboux property.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Define $X = \{(x, A(x)) : x \in \mathbb{R}\}$ and

 $G_2((a,A(a)),(b,A(b)))=\exp(A(a)-A(b)), \quad a,b\in\mathbb{R}.$

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Define $X = \{(x, A(x)) : x \in \mathbb{R}\}$ and

 $G_2((a,A(a)),(b,A(b)))=\exp(A(a)-A(b)), \quad a,b\in\mathbb{R}.$

 G_2 is continuous and X is connected.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Define $X = \{(x, A(x)) : x \in \mathbb{R}\}$ and

 $G_2((a,A(a)),(b,A(b)))=\exp(A(a)-A(b)), \quad a,b\in\mathbb{R}.$

 G_2 is continuous and X is connected.

Example

Let X be a disconnected topological space.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Define $X = \{(x, A(x)) : x \in \mathbb{R}\}$ and

 $G_2((a,A(a)),(b,A(b)))=\exp(A(a)-A(b)), \quad a,b\in\mathbb{R}.$

 G_2 is continuous and X is connected.

Example

Let X be a disconnected topological space. Define $G_3(a, b)$ as being equal to 1 whenever a, b lies in the same connected component of X and -1 elsewhere.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Define $X = \{(x, A(x)) : x \in \mathbb{R}\}$ and

 $G_2((a,A(a)),(b,A(b)))=\exp(A(a)-A(b)), \quad a,b\in\mathbb{R}.$

 G_2 is continuous and X is connected.

Example

Let X be a disconnected topological space. Define $G_3(a, b)$ as being equal to 1 whenever a, b lies in the same connected component of X and -1 elsewhere. G_3 is a continuous solution of (2).

We will denote the diagonal of the product $X \times X$ as

$$\Delta = \{(x, x) : x \in X\}.$$

We will denote the diagonal of the product $X \times X$ as

$$\Delta = \{(x,x) : x \in X\}.$$

Theorem

Assume that X is a separable topological space, $(x_0, y_0) \in X \times X$ and $G: X \times X \to (0, +\infty)$ is a solution of (2) such that G is continuous and equal to 1 at every point of Δ .

We will denote the diagonal of the product $X \times X$ as

$$\Delta = \{(x,x) : x \in X\}.$$

Theorem

Assume that X is a separable topological space, $(x_0, y_0) \in X \times X$ and $G: X \times X \to (0, +\infty)$ is a solution of (2) such that G is continuous and equal to 1 at every point of Δ . Then there exists a function $S: X \times X \to (0, +\infty)$ such that S is a solution of multiplicative Sincov's equation, $S(x_0, y_0) = G(x_0, y_0)$ and estimate $\frac{1}{G^*} \leq S \leq G$ is satisfied.

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Let us introduce a class of functions associated with a map $G \colon X \times X \to (0, +\infty).$

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Page 10

Let us introduce a class of functions associated with a map $G \colon X \times X \to (0, +\infty).$

$$\mathcal{G}(G) := \left\{ f \colon X \to (0, +\infty) \colon \forall_{x,y \in X} \frac{f(x)}{f(y)} \leq G(x, y) \right\}.$$

Corollary

Assume that X is a separable topological space and $G: X \times X \to (0, +\infty)$ is a solution of (2) such that G is continuous and equal to 1 at every point of Δ .

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Corollary

Assume that X is a separable topological space and $G: X \times X \to (0, +\infty)$ is a solution of (2) such that G is continuous and equal to 1 at every point of Δ . Then

$$G(a,b) = \sup\left\{\frac{f(a)}{f(b)}: f \in \mathcal{G}(G)\right\}, \quad a,b \in X.$$

(2)
$$G(x,z) \leq G(x,y) \cdot G(y,z)$$

Corollary

Assume that X is a separable topological space and $G: X \times X \to (0, +\infty)$ is a solution of (2) such that G is continuous and equal to 1 at every point of Δ . Then

$$G(a,b) = \sup \left\{ \frac{f(a)}{f(b)} : f \in \mathcal{G}(G) \right\}, \quad a,b \in X.$$

Conversely, for an arbitrary family \mathcal{G} of positive functions on X every mapping $G: X \times X \to (0, +\infty)$ defined as above solves Sincov's equation and is equal to 1 on Δ .

Second Sincov's inequality

The reverse inequality to (2), i.e. the inequality

$$F(x,z) \ge F(x,y) \cdot F(y,z), \quad x,y,z \in X$$
 (3)

is not fully symmetric to (2).

Second Sincov's inequality

The reverse inequality to (2), i.e. the inequality

$$F(x,z) \ge F(x,y) \cdot F(y,z), \quad x,y,z \in X$$
 (3)

is not fully symmetric to (2).

Introduce a class of functions associated with a map $F: X \times X \to (0, +\infty)$.

$$\mathcal{F}(F) = \left\{ f \colon X \to (0, +\infty) \colon \forall_{x,y \in X} \frac{f(x)}{f(y)} \ge F(x,y) \right\}.$$

(3)
$$F(x,z) \ge F(x,y) \cdot F(y,z)$$

Corollary

Assume that X is a separable topological space and $F: X \times X \to (0, +\infty)$ is a solution of (3) which is continuous and equal to 1 at every point of Δ .

(3)
$$F(x,z) \ge F(x,y) \cdot F(y,z)$$

Corollary

Assume that X is a separable topological space and $F: X \times X \to (0, +\infty)$ is a solution of (3) which is continuous and equal to 1 at every point of Δ . Then

$$F(a,b) = \inf \left\{ \frac{f(a)}{f(b)} : f \in \mathcal{F}(F) \right\}, \quad a, b \in X$$

(3)
$$F(x,z) \ge F(x,y) \cdot F(y,z)$$

Corollary

Assume that X is a separable topological space and $F: X \times X \to (0, +\infty)$ is a solution of (3) which is continuous and equal to 1 at every point of Δ . Then

$$F(a,b) = \inf \left\{ rac{f(a)}{f(b)} : f \in \mathcal{F}(F)
ight\}, \quad a,b \in X.$$

Conversely, for an arbitrary family \mathcal{F} of positive functions on X every mapping $F: X \times X \to (0, +\infty)$ defined as above solves (3) and is equal to 1 on Δ .

(3) $F(x,z) \ge F(x,y) \cdot F(y,z)$

Lemma

Assume that X is a topological space and $F: X \times X \rightarrow [0, +\infty)$ is a continuous solution of (3).

(3)
$$F(x,z) \ge F(x,y) \cdot F(y,z)$$

Lemma

Assume that X is a topological space and $F: X \times X \rightarrow [0, +\infty)$ is a continuous solution of (3). Then the set

$$Z = \{(x, y) \in X \times X : F(x, y) = 0\}$$

of zeros of F is either empty, or for every point $(a, b) \in Z$, it contains either at least one of the sets $\{a\} \times X$ or $X \times \{b\}$, or a set of the form $U_1 \times \{b\} \cup \{a\} \times U_2$, where $U_1, U_2 \subset X$ are open non-void sets.

Set ideals

A family $\mathcal{I} \subset 2^X$ is a set ideal if

Set ideals

Page 15

A family $\mathcal{I} \subset 2^X$ is a set ideal if (a) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$, (b) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

Set ideals

Page 15

A family
$$\mathcal{I} \subset 2^X$$
 is a set ideal if
(a) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$,
(b) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.
Given a set ideal \mathcal{I} of subsets of a set X we define the product
ideal $\mathcal{I} \otimes \mathcal{I}$ of subsets of $X \times X$ as the family of all sets
 $A \subseteq X \times X$ such that

$$\{x \in X : A[x] \notin \mathcal{I}\} \in \mathcal{I},\$$

where

$$A[x] = \{y \in X : (x, y) \in A\}.$$

(3) $F(x,z) \ge F(x,y) \cdot F(y,z)$

Corollary

Assume that X is a topological space, $\mathcal{I} \subset 2^X$ is a set ideal which does not contain open non-void sets and $F: X \times X \rightarrow [0, +\infty)$ is a continuous solution of (3).

(3)
$$F(x,z) \ge F(x,y) \cdot F(y,z)$$

Corollary

Page 16

Assume that X is a topological space, $\mathcal{I} \subset 2^X$ is a set ideal which does not contain open non-void sets and $F: X \times X \rightarrow [0, +\infty)$ is a continuous solution of (3). Then, at least one of the following possibilities holds true:

(b) Z contains a set of the form
$$\{a\} \times X$$
 or $X \times \{b\}$,

(c) Z is a large set with respect to the product ideal $\mathcal{I} \otimes \mathcal{I}$ on $X \times X$.

Generalized metric space or Lawvere space is a nonempty set X together with a function $H: X \times X \to \mathbb{R}$, called a generalized metric, which is nonnegative, vanishes on Δ and satisfies the triangle inequality:

$$H(x,z) \leq H(x,y) + H(y,z), \quad x,y,z \in X.$$
(4)

For arbitrary $H \colon X \times X \to \mathbb{R}$ let us define

$$\mathcal{H}(\mathcal{H}) = \{ arphi \colon \mathsf{X} o \mathbb{R} : orall_{\mathsf{x}, \mathsf{y} \in \mathsf{X}} arphi(\mathsf{x}) - arphi(\mathsf{y}) \leq \mathcal{H}(\mathsf{x}, \mathsf{y}) \}$$
 .

Corollary

Assume that X is a separable topological space and $H: X \times X \to \mathbb{R}$ is a solution of (4) which is continuous and equal to 0 at every point of Δ .

Corollary

Assume that X is a separable topological space and $H: X \times X \to \mathbb{R}$ is a solution of (4) which is continuous and equal to 0 at every point of Δ . Then

$${\sf H}({\sf a},{\sf b})=\sup\left\{arphi({\sf a})-arphi({\sf b}):arphi\in {\cal H}({\sf H})
ight\}, \quad {\sf a},{\sf b}\in {\sf X}.$$

Corollary

Assume that X is a separable topological space and $H: X \times X \to \mathbb{R}$ is a solution of (4) which is continuous and equal to 0 at every point of Δ . Then

$$H(a,b) = \sup \left\{ \varphi(a) - \varphi(b) : \varphi \in \mathcal{H}(H) \right\}, \quad a,b \in X.$$

Conversely, for an arbitrary family \mathcal{H} of real functions on X every mapping $H: X \times X \to \mathbb{R}$ defined as above solves (4) and is equal to 0 on Δ .

Corollary

Under assumptions of the last corollary, there exist a quotient subspace X_0 of X such that:

Corollary

Under assumptions of the last corollary, there exist a quotient subspace X_0 of X such that:

(a) family $\mathcal{H}(H)$ separates points of X_0 ,

Corollary

Under assumptions of the last corollary, there exist a quotient subspace X_0 of X such that:

- (a) family $\mathcal{H}(H)$ separates points of X_0 ,
- (b) every $\varphi \in \mathcal{H}(H)$ satisfies a Lipschitz-type condition

$$|arphi(a) - arphi(b)| \leq rac{1}{2}[H(a,b) + H(b,a)], \quad a,b \in X,$$

Corollary

Under assumptions of the last corollary, there exist a quotient subspace X_0 of X such that:

- (a) family $\mathcal{H}(H)$ separates points of X_0 ,
- (b) every $\varphi \in \mathcal{H}(H)$ satisfies a Lipschitz-type condition

$$|arphi(a) - arphi(b)| \leq rac{1}{2}[H(a,b) + H(b,a)], \quad a,b \in X,$$

(c)
$$H|_{X_0 \times X_0}(a, b) = 0$$
 if and only if $a = b$.

References

- W. Fechner, *Sincov's inequalities on topological spaces*, arXiv:1811.00303 [math.FA].
- D. Gronau, *A remark on Sincov's functional equation*, Notices of the South African Mathematical Society 31, No. 1, April 2000, 1–8.
- D. Gronau, *Translation equation and Sincov's equation A historical remark*, ESAIM: Proceedings and Surveys, November 2014, Vol. 46, 43–46.

F.W. Lawvere, *Metric spaces, generalized logic, and closed categories* (Italian summary), Rend. Sem. Mat. Fis. Milano 43 (1973), 135–166 (1974).

L. Székelyhidi, Remark on the graph of additive functions, Aequationes Math., 90/1 (2016), 7–9.

Thank you for your kind attention!