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Wiener’s Theorem

Theorem (N.Wiener)

Let a function g(t) =
∑

n∈Z cne
2πint ,

∑
n∈Z |cn| <∞, not vanish at

each point of [0, 1]. Then

1

g(t)
=

∑
n∈Z

dne
2πint ,

∑
n∈Z
|dn| <∞.

Put

W =

{
f (x) =

∑
n

cne
2πi〈x ,γn〉, x ∈ Rd , γn ∈ Rd ,

∑
n

|cn| <∞

}
.

Proposition (F, 2017)

For any f ∈W and ε > 0 there is gε ∈W such that gε(x) = 1/f (x) if
|f (x)| ≥ ε and gε(x) = 0 if |f (x)| ≤ ε/2.
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Tempered Distributions and Fourier Transform

S(Rd) is Schwartz’ space of rapidly decreasing C∞-functions on Rd with
finite norms for all n, m ∈ N ∪ {0}

Nn,m(f ) = supx∈Rd{(1 + |x |n) maxk1+···+kd≤m |∂
k1
x1
. . . ∂kdxd f (x)|}.

The space S∗(Rd) of continuous linear functionals on S(Rd) is called the
space of tempered distributions.

For f ∈ S(Rd)

f̂ (y) =

∫
Rp

f (x) exp{−2πi〈x , y〉}dx ∈ S(Rd).

For F ∈ S∗(Rd), in particular, for Radon measures belonging to S∗(Rd)

F̂ (f ) = F (f̂ ) ∀f ∈ S(Rd).

A set Λ is uniformly discrete ≡ inf{|λ− λ′| : λ, λ′ ∈ Λ, λ 6= λ′} > 0.
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”Large” Fourier Quasicrystals

Theorem (Y.Meyer-A.Cordoba-M.Kolountzakis)

Let µ =
∑N

k=1 sk
∑

λ∈Λk
δλ be a Radon measure with uniformly discrete

support Λ =
⋃

k Λk , such that its Fourier transform µ̂ be an atomic Radon
measure with the property

|µ̂|{x : |x | < r} = O(rd) (r →∞).

Then there exists a finite number of full-rank lattices Li and ci ∈ Rd such
that Λ = ∪Ni=1(Li + ci ).

Some conditions on aλ is necessary (N.Lev, A.Olevskii, 2016).

Theorem (F, 2017)

The same is valid for a Radon measure µ =
∑

λ∈Λ aλδλ with uniformly
discrete Λ under the condition infλ∈Λ |aλ| > 0 and the same property of µ̂.
For d = 1 all Lk are equal to a single full-rank lattice.
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Measures with Discrete Spectrum

Theorem (F)

If µ is an atomic Radon measure on Rd such that
|µ|{x : |x | < r} = O(rd) as r →∞, and its spectrum Γ = suppµ̂ is
uniformly discrete, then µ̂ is the Radon measure.
If, in addition, infγ∈Γ |µ̂(γ)| > 0, then

µ =
∑N

k=1

∑Jk

j=1
exp{2πi〈x , aj ,k〉}µk ,

where µk are d-periodic atomic Radon measures with full-rank lattices Lk
of periods, k = 1, . . . ,N, and aj ,k ∈ Rd .
Also, µ̂ is a measure of the form

µ̂ =
∑N

k=1
Fk(y)

∑
γ∈Γk

δγ ,

where Γk = ∪Jkj=1[L∗k + aj ,k ] and Fk ∈W .
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Kahane’s Property

A measure ν is translation bounded if supx∈Rd |µ|(x + B(1)) <∞.

Theorem (Meyer 2018)

Let µ =
∑

λ∈Λ aλδλ be a Radon measure on Rd with uniformly discrete
support Λ and µ̂ be a translation bounded Radon measure. Then the set
Λ1 = {λ : aλ = 1} satisfies Kahane’s property:
if f is a limit of finite exponential sums

∑
cλ exp{2πi〈x , λ〉} with

λ ∈ Λ1, cλ ∈ C, w.r.t the topology of uniform convergence on every
compact subset of Rd , then f is almost periodic in the sense of H.Bohr.

Theorem (F 2019)

Let, in addition, µ̂ be an atomic measure. Then for every ε > 0 the set
Λε = {λ : |aλ| > ε} satisfies Kahane’s property.
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The Poisson Formula and the Converse Result

The Poisson formula is the equality for f ∈ S(Rd)∑
k∈Zd

f (k) =
∑

k∈Zd
f̂ (k) or µ̂ = µ for µ =

∑
k∈Zd

δk .

Theorem ( N.Lev, A.Olevskii, 2015)

Let µ =
∑

λ∈Λ aλδλ, aλ ∈ C, µ̂ =
∑

γ∈Γ bγδγ , bγ > 0, be measures with
the uniformly discrete set Λ and with the discrete and closed set Γ.
Then there exist a single full-rank lattice L such that

Λ ⊂ ∪Nj=1(L + cj), Γ ⊂ ∪N′
k=1(L∗ + dk), c1, . . . , cN , d1, . . . , dN′ ∈ Rd .

For d = 1 the result is valid without the condition bγ > 0.

For d > 1 the result is not valid without the condition bγ > 0 (F, 2015).

”L is a full-rank lattice” means L = A(Zd) with a nonsingular linear
operator A in Rd , L∗ = A∗(Zd) is the conjugate lattice.
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Tempered Distributions with Discrete Support

Λ is close discrete ≡ Λ has no finite limit points.

Proposition

Every tempered distribution F ∈ S∗(Rd) with closed discrete support
Λ ⊂ Rd has the form

F =
∑
λ∈Λ

∑
k1+···+kd≤m

pλ,k∂
k1
x1
. . . ∂kdxd δλ, pλ,k ∈ C, k = (k1, . . . , kd),

where m = ordF <∞. If

∃h <∞, c > 0 : |λ− λ′| > c(1 + |λ|)−h ∀λ, λ′ ∈ Λ, λ 6= λ′,

then ‖Fλ‖ := maxk |pλ,k | = O(|λ|T ) as |λ| → ∞ with some T <∞.
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When Support is a Set of a Finite Type

Theorem ( N.Lev, A.Olevskii, 2016)

Let µ =
∑

λ∈Λ aλδλ, µ̂ =
∑

γ∈Γ bγδγ , aλ, bγ ∈ C, with uniformly discrete
Λ, Γ, and Λ− Λ. Then there are full-rank lattice L and
c1, . . . , cN , d1, . . . , dN′ ∈ Rd such that Λ ⊂ ∪Nj=1(L + cj) and

Γ ⊂ ∪N′
k=1(L∗ + dk).

Theorem (V.Palamodov, 2017)

Let F be a tempered distribution with support Λ and spectrum Γ such that
the differences Λ− Λ and Γ− Γ both be closed discrete sets and one of
them be uniformly discrete. Then Λ and Γ satisfy the same assertions as in
the previous theorem.

We say that a distribution F ∈ S∗(Rd) with closed discrete support Λ is
large if infλ∈Λ ‖Fλ‖ > 0, where ‖Fλ‖ = maxk |pλ,k |.

A set Λ ⊂ Rd is called relatively dense if there is R such that every ball
of radius R intersects with Λ.
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Large Tempered Distributions of a Finite Type

Theorem (F, 2018)

Let F 1,F 2 be large tempered distributions on Rd with relatively dense
discrete supports Λ1, Λ2 such that Λ1 − Λ2 be a closed discrete. If at least
one of the following conditions is satisfied

i) F̂ 1, F̂ 2 are both atomic measures such that

∃ T <∞ |F̂ 1|(B(r)) + |F̂ 2|(B(r)) = O(rT ), r →∞,

ii) supλ∈Λj
‖F j

λ‖ <∞, j = 1, 2, spectrums Γ1, Γ2 are closed discrete and

#{γ ∈ Γj , |γ| < r} = O(rT ), r →∞, j = 1, 2,

iii) F̂ 1, F̂ 2 are both measures with discrete supports Γ1, Γ2 such that

∃h <∞, c > 0 : |γ − γ′| > c(1 + |γ|)−h ∀γ, γ′ ∈ Γj , j = 1, 2,

then Λ1,Λ2 are finite unions of translates of a single full-rank lattice.
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Almost Periodic Distributions

A continuous function g on Rd is almost periodic, if the set

{τ ∈ Rd : supx∈Rd |g(x + τ)− g(x)| < ε}
is relatively dense in Rd for every ε > 0.
A distribution F ∈ S∗(Rd) is almost periodic if the function
(F ? f )(t) = F (f (· − t)) is almost periodic in t ∈ Rd for each f ∈ S(Rd).

Theorem (F, 2018)

For the almost periodicity of F ∈ S∗(Rd), at least one of the following
conditions is sufficient
i) suppF is uniformly discrete, supλ ‖Fλ‖ <∞, Γ = suppF̂ is discrete and
closed, #{γ ∈ Γ : |γ| ≤ r} = O(rT ) as r →∞ with some T <∞,

ii) F̂ is an atomic measure, |F̂ |(B(r)) = O(rT ) as r →∞,

iii) F̂ is an atomic measure, its support Γ is discrete and such that for some
h <∞, c > 0 we have |γ − γ′| > c(1 + |γ|)−h for all γ, γ′ ∈ Γ, γ 6= γ′.

For any set Γ without the above condition there is non-almost
periodic F ∈ S∗(Rd) such that F̂ is a measure with support in Γ.
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Fourier Coefficients of Almost Periodic Distributions

Let g be an almost periodic function on Rd . Its Fourier coefficients are
defined by the formula

ag (γ) = lim
R→∞

1

ωdRd

∫
|x |<R

g(x) exp{−2πi〈x , γ〉}dx ,

where ωd is the volume of the unit ball in Rd . The set {γ : ag (γ) 6= 0} is
countable.

Fourier coefficients of an almost periodic distribution F ∈ S∗(Rd) (or a
measure µ) are defined by the equality

aF (γ) = aF?f (γ)/f̂ (γ), f ∈ S(Rd) such that f̂ (γ) 6= 0.

The definition does not depend on f . Clearly, the set {γ : aF (γ) 6= 0} is
countable too.
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Fourier Transform of Almost Periodic Measures

Every almost periodic measure µ is translation bounded. Also, we have

aµ(γ) = lim
R→∞

1

ωdRd

∫
|x−x0|<R

exp{−2πi〈x , γ〉}µ(dx).

uniformly w.r.t. x0 ∈ Rd (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let µ be an almost periodic measure on Rd with Fourier coefficients
aµ(γ). Then the following properties are equivalent:

i) for every R <∞ the sum
∑
|γ|<R |aµ(γ)| is finite,

ii) µ̂ is a Radon measure,

iii) µ̂ is the atomic Radon measure
∑

γ∈Rd aµ(γ)δg .

There is an almost periodic function g such that ĝ is not a measure.
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Almost Periodic Measures with ”Large” Coefficients

Theorem (F)

Let µ be an almost periodic atomic Radon measure on Rd such that
|µ|{x : |x | < r} = O(rd) as r →∞, the set Γ = {γ ∈ Rd : aµ(γ) 6= 0} be
uniformly discrete, and infγ∈Γ : |aµ(γ)| > 0.
Then

µ =
∑N

k=1

∑Jk

j=1
exp{2πi〈x , bj ,k〉}µk ,

where µk are d-periodic atomic Radon measures with full-rank lattices Lk
of periods, k = 1, . . . ,N, and bj ,k ∈ Rd .
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Fourier transform of Almost Periodic Distributions

Theorem (F., 2018)

Let F ∈ S∗(Rd) be an almost periodic distribution and G be an open
subset of Rd . Then the following properties are equivalent:

i) for every compact K ⊂ G the sum
∑

γ∈K |aF (γ)| is finite,

ii) the restriction F̂ to G is a Radon measure on G ,

iii) the restriction F̂ to G is the atomic Radon measure
∑

γ∈G aF (γ)δγ ,

If suppF̂ ∩ G is a discrete set without limit points in G , then conditions
i)–iii) are satisfied.

Corollary (F., 2018)

For any almost periodic distribution F we have suppF̂ = {γ : aF (γ) 6= 0}.
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Thanks for your attention!
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