Local Wiener's Theorem and Almost Periodic Measures and Distributions

S. FAVOROV

Karazin's Kharkiv national university, Ukraine

Budapest, Augest, 2019

э

< 同 ▶

∃ ► < ∃ ►</p>

Theorem (N.Wiener)

Let a function $g(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i n t}$, $\sum_{n \in \mathbb{Z}} |c_n| < \infty$, not vanish at each point of [0, 1]. Then

$$rac{1}{g(t)} = \sum_{n\in\mathbb{Z}} d_n e^{2\pi i n t}, \quad \sum_{n\in\mathbb{Z}} |d_n| < \infty.$$

Theorem (N.Wiener)

Let a function $g(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i n t}$, $\sum_{n \in \mathbb{Z}} |c_n| < \infty$, not vanish at each point of [0, 1]. Then

$$rac{1}{g(t)} = \sum_{n\in\mathbb{Z}} d_n e^{2\pi i n t}, \quad \sum_{n\in\mathbb{Z}} |d_n| < \infty.$$

Put

$$W = \left\{ f(x) = \sum_{n} c_{n} e^{2\pi i \langle x, \gamma_{n} \rangle}, \quad x \in \mathbb{R}^{d}, \quad \gamma_{n} \in \mathbb{R}^{d}, \quad \sum_{n} |c_{n}| < \infty \right\}.$$

Theorem (N.Wiener)

Let a function $g(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i n t}$, $\sum_{n \in \mathbb{Z}} |c_n| < \infty$, not vanish at each point of [0, 1]. Then

$$rac{1}{g(t)} = \sum_{n\in\mathbb{Z}} d_n e^{2\pi i n t}, \quad \sum_{n\in\mathbb{Z}} |d_n| < \infty.$$

Put

$$W = \left\{ f(x) = \sum_{n} c_{n} e^{2\pi i \langle x, \gamma_{n} \rangle}, \quad x \in \mathbb{R}^{d}, \quad \gamma_{n} \in \mathbb{R}^{d}, \quad \sum_{n} |c_{n}| < \infty \right\}$$

Proposition (F, 2017)

For any $f \in W$ and $\varepsilon > 0$ there is $g_{\varepsilon} \in W$ such that $g_{\varepsilon}(x) = 1/f(x)$ if $|f(x)| \ge \varepsilon$ and $g_{\varepsilon}(x) = 0$ if $|f(x)| \le \varepsilon/2$.

 $S(\mathbb{R}^d)$ is Schwartz' space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d with finite norms for all $n, m \in \mathbb{N} \cup \{0\}$

$$N_{n,m}(f) = \sup_{x \in \mathbb{R}^d} \{ (1+|x|^n) \max_{k_1+\cdots+k_d \leq m} |\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} f(x)| \}.$$

 $S(\mathbb{R}^d)$ is Schwartz' space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d with finite norms for all $n, m \in \mathbb{N} \cup \{0\}$

$$N_{n,m}(f) = \sup_{x \in \mathbb{R}^d} \{ (1+|x|^n) \max_{k_1+\cdots+k_d \leq m} |\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} f(x)| \}.$$

The space $S^*(\mathbb{R}^d)$ of continuous linear functionals on $S(\mathbb{R}^d)$ is called the space of tempered distributions.

 $S(\mathbb{R}^d)$ is Schwartz' space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d with finite norms for all $n, m \in \mathbb{N} \cup \{0\}$

$$N_{n,m}(f) = \sup_{x \in \mathbb{R}^d} \{ (1+|x|^n) \max_{k_1+\cdots+k_d \leq m} |\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} f(x)| \}.$$

The space $S^*(\mathbb{R}^d)$ of continuous linear functionals on $S(\mathbb{R}^d)$ is called the space of tempered distributions.

For $f \in S(\mathbb{R}^d)$ $\hat{f}(y) = \int_{\mathbb{R}^p} f(x) \exp\{-2\pi i \langle x, y \rangle\} dx \in S(\mathbb{R}^d).$

 $S(\mathbb{R}^d)$ is Schwartz' space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d with finite norms for all $n, m \in \mathbb{N} \cup \{0\}$

$$N_{n,m}(f) = \sup_{x \in \mathbb{R}^d} \{ (1+|x|^n) \max_{k_1+\cdots+k_d \leq m} |\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} f(x)| \}.$$

The space $S^*(\mathbb{R}^d)$ of continuous linear functionals on $S(\mathbb{R}^d)$ is called the space of tempered distributions.

For $f \in S(\mathbb{R}^d)$ $\hat{f}(y) = \int_{\mathbb{R}^p} f(x) \exp\{-2\pi i \langle x, y \rangle\} dx \in S(\mathbb{R}^d).$

For $F \in S^*(\mathbb{R}^d)$, in particular, for Radon measures belonging to $S^*(\mathbb{R}^d)$

$$\hat{F}(f) = F(\hat{f}) \quad \forall f \in S(\mathbb{R}^d).$$

 $S(\mathbb{R}^d)$ is Schwartz' space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d with finite norms for all $n, m \in \mathbb{N} \cup \{0\}$

$$N_{n,m}(f) = \sup_{x \in \mathbb{R}^d} \{ (1+|x|^n) \max_{k_1+\cdots+k_d \leq m} |\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} f(x)| \}.$$

The space $S^*(\mathbb{R}^d)$ of continuous linear functionals on $S(\mathbb{R}^d)$ is called the space of tempered distributions.

For $f \in S(\mathbb{R}^d)$ $\hat{f}(y) = \int_{\mathbb{R}^p} f(x) \exp\{-2\pi i \langle x, y \rangle\} dx \in S(\mathbb{R}^d).$

For $F \in S^*(\mathbb{R}^d)$, in particular, for Radon measures belonging to $S^*(\mathbb{R}^d)$

$$\hat{F}(f) = F(\hat{f}) \quad \forall f \in S(\mathbb{R}^d).$$

A set Λ is **uniformly discrete** \equiv inf{ $|\lambda - \lambda'| : \lambda, \lambda' \in \Lambda, \lambda \neq \lambda'$ } > 0.

э

-

Theorem (Y.Meyer-A.Cordoba-M.Kolountzakis)

Let $\mu = \sum_{k=1}^{N} s_k \sum_{\lambda \in \Lambda_k} \delta_{\lambda}$ be a Radon measure with uniformly discrete support $\Lambda = \bigcup_k \Lambda_k$, such that its Fourier transform $\hat{\mu}$ be an atomic Radon measure with the property

$$|\hat{\mu}|\{x: |x| < r\} = O(r^d) \qquad (r \to \infty).$$

Then there exists a finite number of full-rank lattices L_i and $c_i \in \mathbb{R}^d$ such that $\Lambda = \bigcup_{i=1}^N (L_i + c_i)$.

Theorem (Y.Meyer-A.Cordoba-M.Kolountzakis)

Let $\mu = \sum_{k=1}^{N} s_k \sum_{\lambda \in \Lambda_k} \delta_{\lambda}$ be a Radon measure with uniformly discrete support $\Lambda = \bigcup_k \Lambda_k$, such that its Fourier transform $\hat{\mu}$ be an atomic Radon measure with the property

$$|\hat{\mu}|\{x: |x| < r\} = O(r^d) \qquad (r \to \infty).$$

Then there exists a finite number of full-rank lattices L_i and $c_i \in \mathbb{R}^d$ such that $\Lambda = \bigcup_{i=1}^N (L_i + c_i)$.

Some conditions on a_{λ} is necessary (N.Lev, A.Olevskii, 2016).

Theorem (Y.Meyer-A.Cordoba-M.Kolountzakis)

Let $\mu = \sum_{k=1}^{N} s_k \sum_{\lambda \in \Lambda_k} \delta_{\lambda}$ be a Radon measure with uniformly discrete support $\Lambda = \bigcup_k \Lambda_k$, such that its Fourier transform $\hat{\mu}$ be an atomic Radon measure with the property

$$|\hat{\mu}|\{x: |x| < r\} = O(r^d) \qquad (r \to \infty).$$

Then there exists a finite number of full-rank lattices L_i and $c_i \in \mathbb{R}^d$ such that $\Lambda = \bigcup_{i=1}^N (L_i + c_i)$.

Some conditions on a_{λ} is necessary (N.Lev, A.Olevskii, 2016).

Theorem (F, 2017)

The same is valid for a Radon measure $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ with uniformly discrete Λ under the condition $\inf_{\lambda \in \Lambda} |a_{\lambda}| > 0$ and the same property of $\hat{\mu}$.

Theorem (Y.Meyer-A.Cordoba-M.Kolountzakis)

Let $\mu = \sum_{k=1}^{N} s_k \sum_{\lambda \in \Lambda_k} \delta_{\lambda}$ be a Radon measure with uniformly discrete support $\Lambda = \bigcup_k \Lambda_k$, such that its Fourier transform $\hat{\mu}$ be an atomic Radon measure with the property

$$|\hat{\mu}|\{x: |x| < r\} = O(r^d) \qquad (r \to \infty).$$

Then there exists a finite number of full-rank lattices L_i and $c_i \in \mathbb{R}^d$ such that $\Lambda = \bigcup_{i=1}^N (L_i + c_i)$.

Some conditions on a_{λ} is necessary (N.Lev, A.Olevskii, 2016).

Theorem (F, 2017)

The same is valid for a Radon measure $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ with uniformly discrete Λ under the condition $\inf_{\lambda \in \Lambda} |a_{\lambda}| > 0$ and the same property of $\hat{\mu}$. For d = 1 all L_k are equal to a single full-rank lattice.

э

Theorem (F)

If μ is an atomic Radon measure on \mathbb{R}^d such that $|\mu|\{x : |x| < r\} = O(r^d)$ as $r \to \infty$, and its spectrum $\Gamma = \overline{\operatorname{supp}\hat{\mu}}$ is uniformly discrete, then $\hat{\mu}$ is the Radon measure.

Theorem (F)

If μ is an atomic Radon measure on \mathbb{R}^d such that $|\mu|\{x : |x| < r\} = O(r^d)$ as $r \to \infty$, and its spectrum $\Gamma = \overline{\operatorname{supp}}\hat{\mu}$ is uniformly discrete, then $\hat{\mu}$ is the Radon measure. If, in addition, $\inf_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| > 0$, then

$$\mu = \sum_{k=1}^{N} \sum_{j=1}^{J_k} \exp\{2\pi i \langle x, a_{j,k} \rangle\} \mu_k,$$

where μ_k are *d*-periodic atomic Radon measures with full-rank lattices L_k of periods, k = 1, ..., N, and $a_{j,k} \in \mathbb{R}^d$.

Theorem (F)

If μ is an atomic Radon measure on \mathbb{R}^d such that $|\mu|\{x : |x| < r\} = O(r^d)$ as $r \to \infty$, and its spectrum $\Gamma = \overline{\operatorname{supp}}\hat{\mu}$ is uniformly discrete, then $\hat{\mu}$ is the Radon measure. If, in addition, $\inf_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| > 0$, then

$$\mu = \sum_{k=1}^{N} \sum_{j=1}^{J_k} \exp\{2\pi i \langle x, a_{j,k} \rangle\} \mu_k,$$

where μ_k are *d*-periodic atomic Radon measures with full-rank lattices L_k of periods, k = 1, ..., N, and $a_{j,k} \in \mathbb{R}^d$. Also, $\hat{\mu}$ is a measure of the form

$$\hat{\mu} = \sum_{k=1}^{N} F_k(y) \sum_{\gamma \in \Gamma_k} \delta_{\gamma},$$

where $\Gamma_k = \bigcup_{j=1}^{J_k} [L_k^* + a_{j,k}]$ and $F_k \in W$.

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A measure ν is translation bounded if $\sup_{x \in \mathbb{R}^d} |\mu|(x + B(1)) < \infty$.

э

A measure ν is translation bounded if $\sup_{x \in \mathbb{R}^d} |\mu|(x + B(1)) < \infty$.

Theorem (Meyer 2018)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ be a Radon measure on \mathbb{R}^d with uniformly discrete support Λ and $\hat{\mu}$ be a translation bounded Radon measure.

A measure ν is translation bounded if $\sup_{x \in \mathbb{R}^d} |\mu|(x + B(1)) < \infty$.

Theorem (Meyer 2018)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ be a Radon measure on \mathbb{R}^d with uniformly discrete support Λ and $\hat{\mu}$ be a translation bounded Radon measure. Then the set $\Lambda_1 = \{\lambda : a_{\lambda} = 1\}$ satisfies Kahane's property:

A measure ν is translation bounded if $\sup_{x \in \mathbb{R}^d} |\mu|(x + B(1)) < \infty$.

Theorem (Meyer 2018)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ be a Radon measure on \mathbb{R}^{d} with uniformly discrete support Λ and $\hat{\mu}$ be a translation bounded Radon measure. Then the set $\Lambda_{1} = \{\lambda : a_{\lambda} = 1\}$ satisfies Kahane's property: if f is a limit of finite exponential sums $\sum c_{\lambda} \exp\{2\pi i \langle x, \lambda \rangle\}$ with $\lambda \in \Lambda_{1}, c_{\lambda} \in \mathbb{C}, w.r.t$ the topology of uniform convergence on every compact subset of \mathbb{R}^{d} , then f is almost periodic in the sense of H.Bohr.

A measure ν is translation bounded if $\sup_{x \in \mathbb{R}^d} |\mu|(x + B(1)) < \infty$.

Theorem (Meyer 2018)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$ be a Radon measure on \mathbb{R}^{d} with uniformly discrete support Λ and $\hat{\mu}$ be a translation bounded Radon measure. Then the set $\Lambda_{1} = \{\lambda : a_{\lambda} = 1\}$ satisfies Kahane's property: if f is a limit of finite exponential sums $\sum c_{\lambda} \exp\{2\pi i \langle x, \lambda \rangle\}$ with $\lambda \in \Lambda_{1}, c_{\lambda} \in \mathbb{C}$, w.r.t the topology of uniform convergence on every compact subset of \mathbb{R}^{d} , then f is almost periodic in the sense of H.Bohr.

Theorem (F 2019)

Let, in addition, $\hat{\mu}$ be an atomic measure. Then for every $\varepsilon > 0$ the set $\Lambda_{\varepsilon} = \{\lambda : |a_{\lambda}| > \varepsilon\}$ satisfies Kahane's property.

・ロット (雪) (目) (日) ヨ

э

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Theorem (N.Lev, A.Olevskii, 2015)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $a_{\lambda} \in \mathbb{C}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $b_{\gamma} > 0$, be measures with the uniformly discrete set Λ and with the discrete and closed set Γ .

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Theorem (N.Lev, A.Olevskii, 2015)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $a_{\lambda} \in \mathbb{C}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $b_{\gamma} > 0$, be measures with the uniformly discrete set Λ and with the discrete and closed set Γ . Then there exist a single full-rank lattice L such that

$$\Lambda\subset\cup_{j=1}^N(L+c_j),\quad \Gamma\subset\cup_{k=1}^{N'}(L^*+d_k),\quad c_1,\ldots,c_N,\ d_1,\ldots,d_{N'}\in\mathbb{R}^d.$$

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Theorem (N.Lev, A.Olevskii, 2015)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $a_{\lambda} \in \mathbb{C}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $b_{\gamma} > 0$, be measures with the uniformly discrete set Λ and with the discrete and closed set Γ . Then there exist a single full-rank lattice L such that

$$\Lambda\subset\cup_{j=1}^N(L+c_j),\quad \Gamma\subset\cup_{k=1}^{N'}(L^*+d_k),\quad c_1,\ldots,c_N,\ d_1,\ldots,d_{N'}\in\mathbb{R}^d.$$

For d = 1 the result is valid without the condition $b_{\gamma} > 0$.

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Theorem (N.Lev, A.Olevskii, 2015)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $a_{\lambda} \in \mathbb{C}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $b_{\gamma} > 0$, be measures with the uniformly discrete set Λ and with the discrete and closed set Γ . Then there exist a single full-rank lattice L such that

$$\Lambda\subset\cup_{j=1}^N(L+c_j),\quad \Gamma\subset\cup_{k=1}^{N'}(L^*+d_k),\quad c_1,\ldots,c_N,\ d_1,\ldots,d_{N'}\in\mathbb{R}^d.$$

For d = 1 the result is valid without the condition $b_{\gamma} > 0$.

For d > 1 the result is not valid without the condition $b_{\gamma} > 0$ (F, 2015).

The Poisson formula is the equality for $f \in S(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}f(k)=\sum_{k\in\mathbb{Z}^d}\hat{f}(k) \quad ext{ or } \quad \hat{\mu}=\mu \quad ext{ for } \mu=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Theorem (N.Lev, A.Olevskii, 2015)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $a_{\lambda} \in \mathbb{C}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $b_{\gamma} > 0$, be measures with the uniformly discrete set Λ and with the discrete and closed set Γ . Then there exist a single full-rank lattice L such that

$$\Lambda\subset\cup_{j=1}^N(L+c_j),\quad \Gamma\subset\cup_{k=1}^{N'}(L^*+d_k),\quad c_1,\ldots,c_N,\ d_1,\ldots,d_{N'}\in\mathbb{R}^d.$$

For d = 1 the result is valid without the condition $b_{\gamma} > 0$.

For d > 1 the result is not valid without the condition $b_{\gamma} > 0$ (F, 2015).

"*L* is a full-rank lattice" means $L = A(\mathbb{Z}^d)$ with a nonsingular linear operator *A* in \mathbb{R}^d , $L^* = A^*(\mathbb{Z}^d)$ is the conjugate lattice.

Tempered Distributions with Discrete Support

Tempered Distributions with Discrete Support

 Λ is close discrete $\equiv \Lambda$ has no finite limit points.

Tempered Distributions with Discrete Support

 Λ is close discrete $\equiv \Lambda$ has no finite limit points.

Proposition

Every tempered distribution $F \in S^*(\mathbb{R}^d)$ with closed discrete support $\Lambda \subset \mathbb{R}^d$ has the form

$$F = \sum_{\lambda \in \Lambda} \sum_{k_1 + \dots + k_d \leq m} p_{\lambda,k} \partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} \delta_{\lambda}, \quad p_{\lambda,k} \in \mathbb{C}, \quad k = (k_1, \dots, k_d),$$

where $m = \operatorname{ord} F < \infty$.
Tempered Distributions with Discrete Support

 Λ is close discrete $\equiv \Lambda$ has no finite limit points.

Proposition

Every tempered distribution $F \in S^*(\mathbb{R}^d)$ with closed discrete support $\Lambda \subset \mathbb{R}^d$ has the form

$$F = \sum_{\lambda \in \Lambda} \sum_{k_1 + \dots + k_d \leq m} p_{\lambda,k} \partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d} \delta_{\lambda}, \quad p_{\lambda,k} \in \mathbb{C}, \quad k = (k_1, \dots, k_d),$$

where $m = \operatorname{ord} F < \infty$. If

$$\exists h < \infty, \ c > 0: \quad |\lambda - \lambda'| > c(1 + |\lambda|)^{-h} \quad \forall \lambda, \lambda' \in \Lambda, \quad \lambda \neq \lambda',$$

then $\|F_{\lambda}\| := \max_{k} |p_{\lambda,k}| = O(|\lambda|^{T})$ as $|\lambda| \to \infty$ with some $T < \infty$.

э

Theorem (N.Lev, A.Olevskii, 2016)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $a_{\lambda}, b_{\gamma} \in \mathbb{C}$, with uniformly discrete Λ , Γ , and $\Lambda - \Lambda$. Then there are full-rank lattice L and $c_1, \ldots, c_N, d_1, \ldots, d_{N'} \in \mathbb{R}^d$ such that $\Lambda \subset \cup_{j=1}^N (L + c_j)$ and $\Gamma \subset \cup_{k=1}^{N'} (L^* + d_k)$.

Theorem (N.Lev, A.Olevskii, 2016)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $a_{\lambda}, b_{\gamma} \in \mathbb{C}$, with uniformly discrete Λ , Γ , and $\Lambda - \Lambda$. Then there are full-rank lattice L and $c_1, \ldots, c_N, d_1, \ldots, d_{N'} \in \mathbb{R}^d$ such that $\Lambda \subset \cup_{j=1}^N (L + c_j)$ and $\Gamma \subset \cup_{k=1}^{N'} (L^* + d_k)$.

Theorem (V.Palamodov, 2017)

Let F be a tempered distribution with support Λ and spectrum Γ such that the differences $\Lambda - \Lambda$ and $\Gamma - \Gamma$ both be closed discrete sets and one of them be uniformly discrete. Then Λ and Γ satisfy the same assertions as in the previous theorem.

Theorem (N.Lev, A.Olevskii, 2016)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $a_{\lambda}, b_{\gamma} \in \mathbb{C}$, with uniformly discrete Λ , Γ , and $\Lambda - \Lambda$. Then there are full-rank lattice L and $c_1, \ldots, c_N, d_1, \ldots, d_{N'} \in \mathbb{R}^d$ such that $\Lambda \subset \cup_{j=1}^N (L + c_j)$ and $\Gamma \subset \cup_{k=1}^{N'} (L^* + d_k)$.

Theorem (V.Palamodov, 2017)

Let F be a tempered distribution with support Λ and spectrum Γ such that the differences $\Lambda - \Lambda$ and $\Gamma - \Gamma$ both be closed discrete sets and one of them be uniformly discrete. Then Λ and Γ satisfy the same assertions as in the previous theorem.

We say that a distribution $F \in S^*(\mathbb{R}^d)$ with closed discrete support Λ is large if $\inf_{\lambda \in \Lambda} ||F_{\lambda}|| > 0$, where $||F_{\lambda}|| = \max_k |p_{\lambda,k}|$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (N.Lev, A.Olevskii, 2016)

Let $\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$, $\hat{\mu} = \sum_{\gamma \in \Gamma} b_{\gamma} \delta_{\gamma}$, $a_{\lambda}, b_{\gamma} \in \mathbb{C}$, with uniformly discrete Λ , Γ , and $\Lambda - \Lambda$. Then there are full-rank lattice L and $c_1, \ldots, c_N, d_1, \ldots, d_{N'} \in \mathbb{R}^d$ such that $\Lambda \subset \cup_{j=1}^N (L + c_j)$ and $\Gamma \subset \cup_{k=1}^{N'} (L^* + d_k)$.

Theorem (V.Palamodov, 2017)

Let F be a tempered distribution with support Λ and spectrum Γ such that the differences $\Lambda - \Lambda$ and $\Gamma - \Gamma$ both be closed discrete sets and one of them be uniformly discrete. Then Λ and Γ satisfy the same assertions as in the previous theorem.

We say that a distribution $F \in S^*(\mathbb{R}^d)$ with closed discrete support Λ is large if $\inf_{\lambda \in \Lambda} ||F_{\lambda}|| > 0$, where $||F_{\lambda}|| = \max_k |p_{\lambda,k}|$.

A set $\Lambda \subset \mathbb{R}^d$ is called **relatively dense** if there is R such that every ball of radius R intersects with Λ .

Theorem (F, 2018)

Let F^1 , F^2 be large tempered distributions on \mathbb{R}^d with relatively dense discrete supports Λ_1 , Λ_2 such that $\Lambda_1 - \Lambda_2$ be a closed discrete. If at least one of the following conditions is satisfied

Theorem (F, 2018)

Let F^1 , F^2 be large tempered distributions on \mathbb{R}^d with relatively dense discrete supports Λ_1 , Λ_2 such that $\Lambda_1 - \Lambda_2$ be a closed discrete. If at least one of the following conditions is satisfied *i*) \hat{F}^1 , \hat{F}^2 are both atomic measures such that

$$\exists T < \infty \quad |\hat{F}^1|(B(r)) + |\hat{F}^2|(B(r)) = O(r^T), \quad r \to \infty,$$

Theorem (F, 2018)

Let F^1 , F^2 be large tempered distributions on \mathbb{R}^d with relatively dense discrete supports Λ_1 , Λ_2 such that $\Lambda_1 - \Lambda_2$ be a closed discrete. If at least one of the following conditions is satisfied *i*) \hat{F}^1 , \hat{F}^2 are both atomic measures such that

$$\exists T < \infty \quad |\hat{F}^1|(B(r)) + |\hat{F}^2|(B(r)) = O(r^T), \quad r \to \infty,$$

ii) $\sup_{\lambda \in \Lambda_j} \|F_{\lambda}^j\| < \infty, \ j = 1, 2$, spectrums Γ_1, Γ_2 are closed discrete and

$$\#\{\gamma\in \mathsf{\Gamma}_j, \, |\gamma|< r\}=\mathcal{O}(r^{\mathsf{T}}), \, r\to\infty, \, j=1,2,$$

Theorem (F, 2018)

Let F^1 , F^2 be large tempered distributions on \mathbb{R}^d with relatively dense discrete supports Λ_1 , Λ_2 such that $\Lambda_1 - \Lambda_2$ be a closed discrete. If at least one of the following conditions is satisfied *i*) \hat{F}^1 , \hat{F}^2 are both atomic measures such that

$$\exists T < \infty \quad |\hat{F}^1|(B(r)) + |\hat{F}^2|(B(r)) = O(r^T), \quad r \to \infty,$$

ii) $\sup_{\lambda \in \Lambda_j} \|F_{\lambda}^j\| < \infty, \ j = 1, 2$, spectrums Γ_1, Γ_2 are closed discrete and

$$\#\{\gamma \in \mathsf{\Gamma}_j, \ |\gamma| < r\} = \mathcal{O}(r^{\mathsf{T}}), \ r \to \infty, \ j = 1, 2,$$

iii) \hat{F}^1 , \hat{F}^2 are both measures with discrete supports Γ_1 , Γ_2 such that $\exists h < \infty, \ c > 0: \quad |\gamma - \gamma'| > c(1 + |\gamma|)^{-h} \quad \forall \gamma, \gamma' \in \Gamma_j, \ j = 1, 2,$

Theorem (F, 2018)

Let F^1 , F^2 be large tempered distributions on \mathbb{R}^d with relatively dense discrete supports Λ_1 , Λ_2 such that $\Lambda_1 - \Lambda_2$ be a closed discrete. If at least one of the following conditions is satisfied *i*) \hat{F}^1 , \hat{F}^2 are both atomic measures such that

$$\exists T < \infty \quad |\hat{F}^1|(B(r)) + |\hat{F}^2|(B(r)) = O(r^T), \quad r \to \infty,$$

ii) $\sup_{\lambda \in \Lambda_j} \|F_{\lambda}^j\| < \infty, \ j = 1, 2$, spectrums Γ_1, Γ_2 are closed discrete and

$$\#\{\gamma \in \mathsf{\Gamma}_j, \ |\gamma| < r\} = \mathcal{O}(r^{\mathsf{T}}), \ r \to \infty, \ j = 1, 2,$$

iii) \hat{F}^1 , \hat{F}^2 are both measures with discrete supports Γ_1 , Γ_2 such that $\exists h < \infty, \ c > 0: \quad |\gamma - \gamma'| > c(1 + |\gamma|)^{-h} \quad \forall \gamma, \gamma' \in \Gamma_j, \ j = 1, 2,$

then Λ_1, Λ_2 are finite unions of translates of a single full-rank lattice.

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{ au \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x+ au) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{ au \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x + au) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{ au \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x+ au) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

Theorem (F, 2018)

For the almost periodicity of $F \in S^*(\mathbb{R}^d)$, at least one of the following conditions is sufficient

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{\tau \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x + \tau) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

Theorem (F, 2018)

For the almost periodicity of $F \in S^*(\mathbb{R}^d)$, at least one of the following conditions is sufficient

i) supp F is uniformly discrete, sup_{λ} $||F_{\lambda}|| < \infty$, $\Gamma = \text{supp}\hat{F}$ is discrete and closed, $\#\{\gamma \in \Gamma : |\gamma| \le r\} = O(r^T)$ as $r \to \infty$ with some $T < \infty$,

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{\tau \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x + \tau) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

Theorem (F, 2018)

For the almost periodicity of $F \in S^*(\mathbb{R}^d)$, at least one of the following conditions is sufficient

i) supp F is uniformly discrete, sup_{λ} $||F_{\lambda}|| < \infty$, $\Gamma = \text{supp}\hat{F}$ is discrete and closed, $\#\{\gamma \in \Gamma : |\gamma| \le r\} = O(r^T)$ as $r \to \infty$ with some $T < \infty$, ii) \hat{F} is an atomic measure, $|\hat{F}|(B(r)) = O(r^T)$ as $r \to \infty$,

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{\tau \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x + \tau) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

Theorem (F, 2018)

For the almost periodicity of $F \in S^*(\mathbb{R}^d)$, at least one of the following conditions is sufficient

i) supp F is uniformly discrete, sup_{λ} $||F_{\lambda}|| < \infty$, $\Gamma = \text{supp}\hat{F}$ is discrete and closed, $\#\{\gamma \in \Gamma : |\gamma| \le r\} = O(r^T)$ as $r \to \infty$ with some $T < \infty$, ii) \hat{F} is an atomic measure, $|\hat{F}|(B(r)) = O(r^T)$ as $r \to \infty$, iii) \hat{F} is an atomic measure, its support Γ is discrete and such that for some $h < \infty$, c > 0 we have $|\gamma - \gamma'| > c(1 + |\gamma|)^{-h}$ for all $\gamma, \gamma' \in \Gamma$, $\gamma \neq \gamma'$.

A continuous function g on \mathbb{R}^d is **almost periodic**, if the set

$$\{\tau \in \mathbb{R}^d : \sup_{x \in \mathbb{R}^d} |g(x + \tau) - g(x)| < \varepsilon\}$$

is relatively dense in \mathbb{R}^d for every $\varepsilon > 0$.

A distribution $F \in S^*(\mathbb{R}^d)$ is **almost periodic** if the function $(F \star f)(t) = F(f(\cdot - t))$ is almost periodic in $t \in \mathbb{R}^d$ for each $f \in S(\mathbb{R}^d)$.

Theorem (F, 2018)

For the almost periodicity of $F \in S^*(\mathbb{R}^d)$, at least one of the following conditions is sufficient

i) supp F is uniformly discrete, sup_{λ} $||F_{\lambda}|| < \infty$, $\Gamma = \text{supp}\hat{F}$ is discrete and closed, $\#\{\gamma \in \Gamma : |\gamma| \le r\} = O(r^T)$ as $r \to \infty$ with some $T < \infty$, ii) \hat{F} is an atomic measure, $|\hat{F}|(B(r)) = O(r^T)$ as $r \to \infty$, iii) \hat{F} is an atomic measure, its support Γ is discrete and such that for some $h < \infty$, c > 0 we have $|\gamma - \gamma'| > c(1 + |\gamma|)^{-h}$ for all $\gamma, \gamma' \in \Gamma$, $\gamma \neq \gamma'$.

For any set Γ without the above condition there is non-almost periodic $F \in S^*(\mathbb{R}^d)$ such that \hat{F} is a measure with support in Γ . Favorov (Kharkiv national university) Local Wiener's Theorem and Almost Period Budapest, Augest, 2019 11/16

Let g be an almost periodic function on \mathbb{R}^d . Its Fourier coefficients are defined by the formula

$$a_g(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x| < R} g(x) \exp\{-2\pi i \langle x, \gamma \rangle\} dx,$$

where ω_d is the volume of the unit ball in \mathbb{R}^d . The set $\{\gamma : a_g(\gamma) \neq 0\}$ is countable.

Let g be an almost periodic function on \mathbb{R}^d . Its Fourier coefficients are defined by the formula

$$a_g(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x| < R} g(x) \exp\{-2\pi i \langle x, \gamma \rangle\} dx,$$

where ω_d is the volume of the unit ball in \mathbb{R}^d . The set $\{\gamma : a_g(\gamma) \neq 0\}$ is countable.

Fourier coefficients of an almost periodic distribution $F \in S^*(\mathbb{R}^d)$ (or a measure μ) are defined by the equality

$$a_F(\gamma) = a_{F\star f}(\gamma)/\hat{f}(\gamma), \quad f\in S(\mathbb{R}^d)$$
 such that $\hat{f}(\gamma)
eq 0.$

Let g be an almost periodic function on \mathbb{R}^d . Its Fourier coefficients are defined by the formula

$$a_g(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x| < R} g(x) \exp\{-2\pi i \langle x, \gamma \rangle\} dx,$$

where ω_d is the volume of the unit ball in \mathbb{R}^d . The set $\{\gamma : a_g(\gamma) \neq 0\}$ is countable.

Fourier coefficients of an almost periodic distribution $F \in S^*(\mathbb{R}^d)$ (or a measure μ) are defined by the equality

$$a_F(\gamma) = a_{F\star f}(\gamma)/\hat{f}(\gamma), \quad f\in \mathcal{S}(\mathbb{R}^d) ext{ such that } \hat{f}(\gamma)
eq 0.$$

The definition does not depend on f. Clearly, the set $\{\gamma : a_F(\gamma) \neq 0\}$ is countable too.

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let μ be an almost periodic measure on \mathbb{R}^d with Fourier coefficients $a_{\mu}(\gamma)$. Then the following properties are equivalent:

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let μ be an almost periodic measure on \mathbb{R}^d with Fourier coefficients $a_{\mu}(\gamma)$. Then the following properties are equivalent:

i) for every R $<\infty$ the sum $\sum_{|\gamma| < R} |a_{\mu}(\gamma)|$ is finite,

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let μ be an almost periodic measure on \mathbb{R}^d with Fourier coefficients $a_{\mu}(\gamma)$. Then the following properties are equivalent:

i) for every
$${\sf R} < \infty$$
 the sum $\sum_{|\gamma| < {\sf R}} |{\sf a}_\mu(\gamma)|$ is finite,

ii) $\hat{\mu}$ is a Radon measure,

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let μ be an almost periodic measure on \mathbb{R}^d with Fourier coefficients $a_{\mu}(\gamma)$. Then the following properties are equivalent:

i) for every
$${\sf R} < \infty$$
 the sum $\sum_{|\gamma| < {\sf R}} |{\sf a}_\mu(\gamma)|$ is finite,

ii) $\hat{\mu}$ is a Radon measure,

iii) $\hat{\mu}$ is the atomic Radon measure $\sum_{\gamma \in \mathbb{R}^d} \mathsf{a}_{\mu}(\gamma) \delta_{\mathsf{g}}$.

Every almost periodic measure μ is translation bounded. Also, we have

$$a_{\mu}(\gamma) = \lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x-x_0| < R} \exp\{-2\pi i \langle x, \gamma \rangle\} \mu(dx).$$

uniformly w.r.t. $x_0 \in \mathbb{R}^d$ (L.Ronkin, 1997).

Theorem (Y.Meyer, 2018)

Let μ be an almost periodic measure on \mathbb{R}^d with Fourier coefficients $a_{\mu}(\gamma)$. Then the following properties are equivalent:

i) for every
$${\sf R} < \infty$$
 the sum $\sum_{|\gamma| < {\sf R}} |{\sf a}_\mu(\gamma)|$ is finite,

ii) $\hat{\mu}$ is a Radon measure,

iii) $\hat{\mu}$ is the atomic Radon measure $\sum_{\gamma \in \mathbb{R}^d} a_{\mu}(\gamma) \delta_{g}$.

There is an almost periodic function g such that \hat{g} is not a measure.

Almost Periodic Measures with "Large" Coefficients

Almost Periodic Measures with "Large" Coefficients

Theorem (F)

Let μ be an almost periodic atomic Radon measure on \mathbb{R}^d such that $|\mu|\{x : |x| < r\} = O(r^d)$ as $r \to \infty$, the set $\Gamma = \{\gamma \in \mathbb{R}^d : a_\mu(\gamma) \neq 0\}$ be uniformly discrete, and $\inf_{\gamma \in \Gamma} : |a_\mu(\gamma)| > 0$.

Almost Periodic Measures with "Large" Coefficients

Theorem (F)

Let μ be an almost periodic atomic Radon measure on \mathbb{R}^d such that $|\mu|\{x : |x| < r\} = O(r^d)$ as $r \to \infty$, the set $\Gamma = \{\gamma \in \mathbb{R}^d : a_\mu(\gamma) \neq 0\}$ be uniformly discrete, and $\inf_{\gamma \in \Gamma} : |a_\mu(\gamma)| > 0$. Then

$$\mu = \sum_{k=1}^{N} \sum_{j=1}^{J_k} \exp\{2\pi i \langle x, \mathbf{b}_{j,k} \rangle\} \mu_k,$$

where μ_k are *d*-periodic atomic Radon measures with full-rank lattices L_k of periods, k = 1, ..., N, and $b_{j,k} \in \mathbb{R}^d$.

Fourier transform of Almost Periodic Distributions

Fourier transform of Almost Periodic Distributions

Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent:
Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent:

i) for every compact $K \subset G$ the sum $\sum_{\gamma \in K} |a_F(\gamma)|$ is finite,

Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent:

i) for every compact $K \subset G$ the sum $\sum_{\gamma \in K} |a_F(\gamma)|$ is finite,

ii) the restriction \hat{F} to G is a Radon measure on G,

Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent: i) for every compact $K \subset G$ the sum $\sum_{\gamma \in K} |a_F(\gamma)|$ is finite, ii) the restriction \hat{F} to G is a Radon measure on G, iii) the restriction \hat{F} to G is the atomic Radon measure $\sum_{\gamma \in G} a_F(\gamma) \delta_{\gamma}$,

Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent: *i*) for every compact $K \subset G$ the sum $\sum_{\gamma \in K} |a_F(\gamma)|$ is finite, *ii*) the restriction \hat{F} to G is a Radon measure on G, *iii*) the restriction \hat{F} to G is the atomic Radon measure $\sum_{\gamma \in G} a_F(\gamma) \delta_{\gamma}$, If $\operatorname{supp} \hat{F} \cap G$ is a discrete set without limit points in G, then conditions *i*)-*iii*) are satisfied.

Theorem (F., 2018)

Let $F \in S^*(\mathbb{R}^d)$ be an almost periodic distribution and G be an open subset of \mathbb{R}^d . Then the following properties are equivalent: *i*) for every compact $K \subset G$ the sum $\sum_{\gamma \in K} |a_F(\gamma)|$ is finite, *ii*) the restriction \hat{F} to G is a Radon measure on G, *iii*) the restriction \hat{F} to G is the atomic Radon measure $\sum_{\gamma \in G} a_F(\gamma) \delta_{\gamma}$, If $\operatorname{supp} \hat{F} \cap G$ is a discrete set without limit points in G, then conditions *i*)–*iii*) are satisfied.

Corollary (F., 2018)

For any almost periodic distribution F we have $\operatorname{supp} \hat{F} = \overline{\{\gamma : a_F(\gamma) \neq 0\}}$.

Thanks for your attention!