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Abstarct

The talk will contain the results improving known two-sided bounds for the
sharp constant in the Jackson–Nikol’skii inequality between the uniform
norm and integral norm of trigonometric polynomials obtained by
L.V. Taikov and D.V. Gorbachev earlier.
We extend an approach proposed by Ya.L. Geronimus and F. Peherstorfer to
characterize canonical sets of points in the space of trigonometric
polynomials on the period in the case of the unit weight to the case of a
special Jacobi weight.
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Statement of the problem

Denote by Tn the subspace of real-valued trigonometric polynomials

τ(t) = a0 +
n∑
ν=1

(aν cos νt + bν sin νt) =
n∑

ν=−n
cνe

iνt , aν , bν ∈ R.

Let T = R/2πZ = (−π, π] be the period of length 2π.
D. Jackson (1933) proved the inequality

‖τ‖C ≤ 2n‖τ‖L, τ ∈ Tn,

where
‖τ‖C = max

t∈T
|τ(t)|, ‖τ‖L =

∫
T
|τ(t)| dt.
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Statement of the problem

We are interested in an exact constant γn in the inequality

‖τ‖C ≤ γn‖τ‖L, τ ∈ Tn,

i.e., in the value

γn = sup
τ∈Tn, τ 6≡0

‖τ‖C
‖τ‖L

.

In 1930th, Ya.L. Geronimus and N.I. Akhiezer with M.G.Krein established
that the problem on calculating this value reduces to finding the largest
root of a special equation written in terms of the determinant of
n × n-matrix satisfying special conditions. However, this result does not
show the behavior of γn as n→∞.
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History

Studying this problem in his paper of 1965, L.V. Taikov refers to
S.B. Stechkin’s result about the fact that there exists a finite positive
constant γ such that

γn = γn + o(n) as n→∞.

Jackson’s result (1933) mentioned above implies the upper bound

γ ≤ 2.

Taikov (1965) proved the bounds

1.07995 . . .

2π
≤ γ ≤ 1.16625 . . .

2π
.

D.V. Gorbachev (2003) refined these bounds:

1.08185 . . .

2π
≤ γ ≤ 1.09769 . . .

2π
.
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History

In addition, he proved that the values

ν = 2πγ, νn = 2πγn

are related by the inequalities

nν ≤ νn ≤ (n + 1)ν. (1)

We also should note the following result by V.F. Babenko, V.A. Kofanov,
and S.A. Pichugov (2002):

sup
n∈N

νn+1

n
= ν2 =

π

2ξ
= 2.12532 . . . ,

where ξ is the unique root of the equation cos t = t. This result implies the
inequality νn ≤ (n − 1)ν2 (n = 2, 3, . . .), which for n > 3 is weaker than
the former inequality in (1).
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Denote by Cn the subspace of even trigonometric polynomials τ ∈ Tn; i.e.,
Cn is the subspace of cosine-polynomials

τ(t) =
n∑
ν=0

aν cos νt

of order at most n with real coefficients a0, a1, . . . , an. Denote by a = a(τ)
the vector composed from coefficients of a cosine-polynomial τ :

a = a(τ) = (a0, a1, . . . , an) ∈ Rn+1.
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The subspace Tn and the norms ‖ · ‖C and ‖ · ‖L are shift invariant. In view
of this fact and other known reasonings, it is easy to show that the
following chain of equalities holds:

γn = sup
τ∈Tn,τ 6≡0

‖τ‖C
‖τ‖L

= sup
τ∈Tn,τ 6≡0

|τ(0)|
‖τ‖L

= sup
τ∈Tn,τ 6≡0

τ(0)

‖τ‖L
= sup

τ∈Cn,τ 6≡0

τ(0)

‖τ‖L
.

It is clear that the following equality is valid:

γn =
1

µn
,

in which
µn = inf{‖τ‖L : τ ∈ Cn, τ(0) = 1}.
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It is also obvious that the value µn can be represented in the form

µn = inf{‖τ‖L : τ ∈ Cn, (1, a(τ)) = 1},

where (1, a) =
n∑
ν=0

aν is the usual inner product of the vectors

1 = (1, 1, . . . , 1) and a = (a0, a1, . . . , an) in Rn+1. Using this
representation and one of V.Markov’s ideas (1892), we reduce the problem
on µn to finding the value of the best integral approximation on (0, π) to
the constant function equal identically to 1 by polynomials in terms of the
system of functions

Φn = {1−cos t, (1−cos t) cos t, (1−cos t) cos 2t, . . . , (1−cos t) cos (n − 1)t}.
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More precisely,

µn = 2 inf
τ∈Cn−1

‖1− (1− cos t)τ(t)‖L(0,π), (2)

where ‖f ‖L(0,π) =

∫ π

0
|f (t)| dt. Here, we used the fact that

‖f ‖L = 2‖f ‖L(0,π) for even 2π-periodic functions f . In other words, we
have the equalities

µn = 2E (1, span Φn, L(0, π)) = 2E (1,w · Cn−1, L(0, π)),

where
w(t) = 1− cos t

and E (f ,Y ,X ) is the value of the best approximation of an element f of a
normed space X by a subspace Y ⊂ X .
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Since Φn is a Chebyshev system of functions in the interval (0, π) and the
approximated function is continuous in this interval, we conclude that, by
Jackson’s theorem, there exists a unique polynomial

g∗ ∈ span Φn

of the best integral approximation; i.e., the infimum on the right-hand side
of equality (2) is attained at the unique polynomial

g∗(t) = (1− cos t)τ∗(t), where τ∗ ∈ Cn−1.
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In addition, if we add the function identically equal to 1 to the system Φn,
then the extended system is also Chebyshev in the interval (0, π).
Therefore, arguing similar to S.M.Nikol’slii (1947) and applying a result by
S.N. Bernstein (1937), we conclude that this extremal polynomial g∗

interpolates the approximated constant function at exactly n points
t1 < t2 < · · · < tn located in the interval (0, π), which coincide with zeros
of the cosine-polynomial τn of order n with unit leading coefficient

τn(t) = cos nt +
n−1∑
k=0

âk cos kt

that deviates least from zero in the following sense:

inf
τ∈Cn−1

∫ π

0
|cos nt − τ(t)| (1− cos t) dt =

∫ π

0
|τn(t)| (1− cos t) dt. (3)
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Applying the duality relations to the right-hand side of (2), we come to the
equalities

µn
2

= sup
F⊥w ·Cn−1, ‖F‖L∞≤1

∫ π

0
F (t) dt, n ∈ N. (4)

Moreover, there exists a function F0 ∈ L∞ such that F0⊥w · Cn−1,
‖F0‖L∞ = 1, and at which the supremum in (4) is attained. Here,
F⊥w · Cn−1 means that∫ π

0
F (t)τ(t)w(t) dt = 0 for any τ ∈ Cn−1.

In addition, the extremal function F0 is unique; moreover, it is a
signum-function, i.e., |F0(t)| = 1 at all points t from (0, π) except for set
of points of sign variation t1 < t2 < · · · < tn from (0, π). This family of
points {t1, t2, . . . , tn} ⊂ (0, π) coincides with the family of zeros of the
cosine-polynomial τn of order n with the unit leading coefficient that
deviates least from zero.
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To construct the extremal signum-function F0, we use a finite Blaschke
product defined by algebraic polynomials with real coefficients, all zeros of
which lie inside the unit disk of the complex plane. We apply results by
Ya.L. Geronimus and F. Peherstorfer as well as modifications of their ideas.
This made it possible to reduce the problem under consideration for a
fixed n to finding the root of an equation involving both algebraic and
trigonometric functions. Due to bounds (1) established by Gorbachev
(2003), we succeeded in good localization of the required root and finding
it numerically with any accuracy using the analytic software Maple.
In turn, this made it possible to improve the upper bound for γ. Thus, we
have

1.081

2π
≤ γ ≤ 1.082

2π
.
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Note that Hörmander and Bernhardsson (1993), by other methods, showed
that

γ ≈ 1.08185

2π
.

The problem of calculating γ remains open.
The importance of estimating constants similar to γ in the theory of the
Riemann zeta function was noted by E. Carneiro, M.B.Milinovich, and
K. Soundararajan (2018).
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Example: n = 4

The problem of calculating γn for n = 4 reduces to finding the root
λ = λ(4) of the equation N (λ) = 0 in the interval λ ∈ (−0.1815, 0.1815) ,
where

N (λ) = −180λ2 cos (λ) + 288 cos (λ)λ3 − 96 cos (λ)λ5 − 96 cos (λ)λ4+

+64 cos (λ)λ6−36λ cos (λ)−288 (cos (λ))3 λ3−96 (cos (λ))3 λ4−9 cos (λ) +

+9 sin (λ)−72 sin (λ)λ (cos (λ))2+288 sin (λ)λ2 (cos (λ))2−64 sin (λ)λ6−

−96 sin (λ)λ5+192 sin (λ)λ4−108 sin (λ)λ2+36 sin (λ)λ+288λ2 (cos (λ))3 +

+72λ (cos (λ))3−36 sin (λ) (cos (λ))2−36 (cos (λ))5+36 sin (λ) (cos (λ))4−

−96 sin (λ) (cos (λ))2 λ4 + 36 (cos (λ))3 + 288 sin (λ)λ3 (cos (λ))2 ,
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Example: n = 4

The numerical value of the solution is

λ(4) = 0.145601085582629378759022010843 . . . .

Hence,

c(4) =
π

|4 · 4 · λ(4)|
= 1.34854448415449955178612395382 . . . ,

where
c(n) =

2πγn
n

.
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Thank you for your attention!
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